齊型空間上多線性位勢(shì)型積分算子交換子的加權(quán)有界性
發(fā)布時(shí)間:2019-01-23 16:40
【摘要】:本文討論齊型空間上多線性位勢(shì)型積分算子與BMO函數(shù)構(gòu)成的交換子的加權(quán)不等式.齊型空間可看作Rn的推廣,因此研究其上各類積分算子的加權(quán)有界性有理論意義和應(yīng)用價(jià)值.齊型空間上的多線性位勢(shì)型積分算子為其中核函數(shù)K(x,y)是非負(fù)可測(cè)函數(shù),滿足某些增長性條件.TK與BMO函數(shù)b(b1,…,bm)構(gòu)成的交換子為對(duì)于多線性位勢(shì)型積分算子交換子,本文得到雙權(quán)不等式成立的Ap型充分條件.同時(shí)給出了下列關(guān)于任意權(quán)的加權(quán)不等式:(1)若0p≤1,則存在C0,使得對(duì)任意的權(quán)ω和f,(2)若p1,則存在常數(shù)C0,使得對(duì)任意的權(quán)ω和f,
[Abstract]:In this paper, we discuss the weighted inequalities of commutators composed of multiple linear potential type integral operators and BMO functions on homogeneous spaces. The homogeneous space can be regarded as a generalization of Rn, so it is of theoretical significance and practical value to study the weighted boundedness of all kinds of integral operators on it. The integral operator of multilinear potential type on a homogeneous space is a nonnegative measurable function in which the kernel function K (XY) satisfies some growth conditions. TK and BMO function b (b1, 鈥,
本文編號(hào):2414008
[Abstract]:In this paper, we discuss the weighted inequalities of commutators composed of multiple linear potential type integral operators and BMO functions on homogeneous spaces. The homogeneous space can be regarded as a generalization of Rn, so it is of theoretical significance and practical value to study the weighted boundedness of all kinds of integral operators on it. The integral operator of multilinear potential type on a homogeneous space is a nonnegative measurable function in which the kernel function K (XY) satisfies some growth conditions. TK and BMO function b (b1, 鈥,
本文編號(hào):2414008
本文鏈接:http://sikaile.net/kejilunwen/yysx/2414008.html
最近更新
教材專著