基于框架方法的信用評估模型研究
[Abstract]:With the progress of society and the development of Internet, the relationship between people's life and credit becomes more and more close. Because of the dispersion of data and the different standards of evaluation methods, the current credit system, including the impact index system and the evaluation model, need to be improved and improved. Aiming at the problems that the credit data index is backward, the data dispersion is not conducive to the fusion and the evaluation method is not considered in the special situation, the paper summarizes and supplements the credit system, and applies the framework method to the expression of the credit impact index system. A scheme of credit evaluation based on frame method is proposed. With the progress of the times, more factors will influence the credit. In this paper, the possibility index of credit system is analyzed from the aspects of government credit, enterprise credit, personal credit and peasant household credit aiming at peasant household group, and the frame method is used to express it. Because the framework structure is clear and easy to extend, the expressed credit system is easy to understand, and the JSON format is used to store the index structure directly. Combined with the training result of Logistic regression model for each index weight, the original method of matching reasoning is improved by using the general idea of frame method to solve the problem. The similarity calculation is used for case matching, and the probability difference is used to replace the attribute difference for weighted average. Because the data is transformed into probability, when modeling with Logistic regression, the feature term data is transformed into the corresponding probability in order to realize the consistency of the data. By comparing the scheme with DT,SVM, it is shown that the scheme is feasible in credit evaluation, and the accuracy of evaluation is improved when the data sample is small. In addition, because the scheme is a case matching after rough search, The consumption of time has been greatly reduced.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O212.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張國政;陳維煌;劉呈輝;;基于Logistic模型的商業(yè)銀行個人消費信貸風(fēng)險評估研究[J];金融理論與實踐;2015年03期
2 孟晗駿;;美國個人信用體系及對我國的啟示[J];經(jīng)濟師;2015年01期
3 閆明;顧煒宇;;我國地方政府信用風(fēng)險評級體系構(gòu)建:框架與方法[J];中央財經(jīng)大學(xué)學(xué)報;2014年03期
4 劉文;甘志春;李文;王更輝;;基于XML和JSON的格式化網(wǎng)絡(luò)參數(shù)文件研究[J];計算機與網(wǎng)絡(luò);2013年24期
5 賀德榮;蔣白純;;面向社會管理的個人信用評價指標(biāo)體系研究和設(shè)計[J];電子政務(wù);2013年05期
6 林鈞躍;;社會信用體系理論的傳承脈絡(luò)與創(chuàng)新[J];征信;2012年01期
7 楊宏玲;郭高玲;;基于BBC與價值鏈風(fēng)險分析的農(nóng)戶信用評價指標(biāo)體系探析[J];科技管理研究;2011年06期
8 呂維霞;王永貴;;基于公眾感知的政府公信力影響因素分析[J];華中師范大學(xué)學(xué)報(人文社會科學(xué)版);2010年04期
9 李敏婷;褚義景;;基于節(jié)能減排的企業(yè)信用評價指標(biāo)體系研究[J];武漢理工大學(xué)學(xué)報;2010年04期
10 范柏乃;張鳴;;政府信用的影響因素與管理機制研究[J];浙江大學(xué)學(xué)報(人文社會科學(xué)版);2009年02期
,本文編號:2390491
本文鏈接:http://sikaile.net/kejilunwen/yysx/2390491.html