基于主成分分析的多元分段模型預(yù)測集成電路晶圓良率的應(yīng)用
[Abstract]:With the introduction of the National Integrated Circuit Industry Development Program by the Chinese government, the integrated circuit manufacturing industry has flourished in China. In China, the manufacturing of integrated circuits is mainly in the form of contract manufacturing, so the key to the development and survival of the industry lies in the control and improvement of the yield of integrated circuit chips. In the research of integrated circuit yield prediction model, some scholars have put forward a variety of yield models since the 1960s, and the early research mainly focused on finding the relationship between yield and on-line defects. As the process improves, the design becomes more difficult, and the yield prediction is expected to be more accurate. In this paper, we propose two models of yield loss. The first type of yield loss mode, the loss of yield caused by line defects. The second type of yield loss mode, chip process design defects caused by yield loss. We use the electrical test parameters as independent variables and use the statistical model to accurately predict the loss of yield. By establishing multivariate piecewise functions of two kinds of yield patterns, we try to reduce repeated information by principal component analysis (PCA), find suitable segmental points by using decision tree method, and establish Logistic regression models for segmented parts respectively. According to the results of model analysis, it is found that the yield prediction model improves the error greatly. This multivariate piecewise model also explains the coexistence of two yield loss models. Based on this method, a set of standard flow can be established for the construction of statistical model, and the standard can be automated by computer program. Easy to use this tool, timely detection of production anomalies, reduce losses.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O212.1
【相似文獻】
相關(guān)期刊論文 前10條
1 吳海建;主成分分析的基本思想及應(yīng)用實例[J];河南省情與統(tǒng)計;2003年04期
2 宋濤;唐德善;;基于灰色數(shù)列預(yù)測和主成分分析的國債風(fēng)險仿真模型[J];統(tǒng)計與決策;2006年03期
3 張立華;金浩;邢會;張英民;;河北省經(jīng)濟可持續(xù)發(fā)展的全局主成分分析[J];河北工業(yè)大學(xué)學(xué)報;2006年02期
4 林海明;;主成分分析與初始因子分析的異同——兼與盧紋岱《SPSS for Windows統(tǒng)計分析》商榷[J];統(tǒng)計與決策;2006年08期
5 徐雅靜;汪遠征;;主成分分析應(yīng)用方法的改進[J];數(shù)學(xué)的實踐與認識;2006年06期
6 趙曉翠;王來生;;基于主成分分析和支持向量機的商業(yè)銀行信貸風(fēng)險評估[J];統(tǒng)計與決策;2006年13期
7 李建華;顧穗珊;藏晶;;基于主成分分析的高新技術(shù)成果轉(zhuǎn)化的聚類分析[J];工業(yè)技術(shù)經(jīng)濟;2006年07期
8 王建民;王傳旭;楊力;余忠林;王運祥;;基于主成分分析模型的煤礦企業(yè)員工滿意度實證研究[J];安徽理工大學(xué)學(xué)報(社會科學(xué)版);2007年02期
9 王斌會;;穩(wěn)健主成分分析方法研究及其在經(jīng)濟管理中的應(yīng)用[J];統(tǒng)計研究;2007年08期
10 李振紅;宋述剛;余運君;;湖北農(nóng)產(chǎn)品指標的主成分分析[J];太原師范學(xué)院學(xué)報(自然科學(xué)版);2008年04期
相關(guān)會議論文 前10條
1 么彩蓮;魏寧;;關(guān)于主成分分析的改進方法探討[A];中國現(xiàn)場統(tǒng)計研究會第12屆學(xué)術(shù)年會論文集[C];2005年
2 陳明星;繆柏其;靳韜;;利率影響因素的主成分分析與因子分析[A];中國現(xiàn)場統(tǒng)計研究會第12屆學(xué)術(shù)年會論文集[C];2005年
3 孫曉東;胡勁松;焦s,
本文編號:2380155
本文鏈接:http://sikaile.net/kejilunwen/yysx/2380155.html