帶外場的空間非均勻Boltzmann方程的一致L~p穩(wěn)定性
發(fā)布時間:2018-12-13 13:45
【摘要】:Boltzmann方程是一類重要的微分方程,它的數(shù)學理論研究也一直是最具有挑戰(zhàn)的研究領域之一,特別是解的性質(zhì)研究.本文是在初值f0充分小且關于多項式或指數(shù)央速衰減的條件下,研究帶一種外力場且具有角截斷的逆冪位勢的Boltzmann方程溫和解的穩(wěn)定性問題,包括部分軟位勢和Maxwellian模型(-4/37≤0)、硬位勢和硬求模型(0γ≤1).在此之前,Duan-Yang-Zhu在2005年的文章中已經(jīng)給出了特征方程的解滿足一定條件時Boltzmann方程溫和解的全局存在性,而本文是在此條件的基礎上又給外力作了一個限制(即(?)0∞||E(t)||Lx∞dt≤C0),來得到溫和解的穩(wěn)定性.本文的主要證明思路來源于Ha-Lee-Yun 2009年的文章,但它證明的是帶有小外力場空間非均勻Boltzamnn經(jīng)典解的穩(wěn)定性,本文的外力場與之相比較要“大”些,而且在硬位勢和硬球模型情形下,指數(shù)衰減指標可以優(yōu)化到λ2ε0,這里的ε可以充分小.首先是對溫和解的加權(quán)Lp范數(shù)作估計(權(quán)重是(1+|u|2)k/2),得到當p3時關于時間t的可積性,然后再對初值分別為f0和f0的Boltzmann方程溫和解差的加權(quán)Lp范數(shù)關于時間t的導數(shù)作估計,最后利用Gronwall型不等式.就可以得到穩(wěn)定性的證明,其中硬位勢和硬球模型情形下利用的是一種廣義的Gronwall不等式.
[Abstract]:Boltzmann equation is a kind of important differential equation, its mathematical theory research is one of the most challenging research fields, especially the study of the properties of solution. In this paper, under the condition that the initial value f _ 0 is sufficiently small and the polynomial or exponential central velocity is attenuated, the temperature and stability of the Boltzmann equation with an external force field and an inverse power potential with angular truncation are studied. It includes partial soft potential and Maxwellian model (-4 / 37 鈮,
本文編號:2376633
[Abstract]:Boltzmann equation is a kind of important differential equation, its mathematical theory research is one of the most challenging research fields, especially the study of the properties of solution. In this paper, under the condition that the initial value f _ 0 is sufficiently small and the polynomial or exponential central velocity is attenuated, the temperature and stability of the Boltzmann equation with an external force field and an inverse power potential with angular truncation are studied. It includes partial soft potential and Maxwellian model (-4 / 37 鈮,
本文編號:2376633
本文鏈接:http://sikaile.net/kejilunwen/yysx/2376633.html
最近更新
教材專著