瞬態(tài)熱傳導(dǎo)問(wèn)題的精細(xì)積分-雙重互易邊界元法
[Abstract]:The dual reciprocal boundary element method and the precise integration method are used to solve the transient heat conduction problem of two dimensional heat source. For the domain integral caused by the heat source term and the time derivative term of temperature in the boundary integral equation, the domain integral is transformed into the boundary integral by using the double reciprocal method. After the boundary integral equation is discretized by the boundary element method, the system of differential equations about time is obtained, and the exponential matrix is treated by the precise integration method. The inhomogeneous terms caused by boundary conditions and heat source terms in differential equations are calculated by analytical method. In order to compare the computational effect of the precise integral-double reciprocal boundary element method, the derivative term of temperature to time is calculated by using the finite difference method. The effectiveness and accuracy of the proposed method are verified by numerical examples. The results show that the time step size has little effect on the results of the precise integral-dual reciprocal boundary element method, while the finite difference method is more sensitive to the time step size and is effective only when the time step size is small. When a large time step is selected, the precision integral-dual reciprocal boundary element method still has a good calculation accuracy.
【作者單位】: 合肥工業(yè)大學(xué)土木與水利工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(11672098;11502063) 安徽省自然科學(xué)基金(1608085QA07)
【分類號(hào)】:O241.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 汪夢(mèng)甫,區(qū)達(dá)光;精細(xì)積分方法的評(píng)估與改進(jìn)[J];計(jì)算力學(xué)學(xué)報(bào);2004年06期
2 趙麗濱,張建宇,王壽梅;精細(xì)積分方法的穩(wěn)定性和精度分析[J];北京航空航天大學(xué)學(xué)報(bào);2000年05期
3 吳澤艷;王立峰;武哲;;大規(guī)模動(dòng)力系統(tǒng)高精度X椢富址椒ǹ燜偎惴╗J];振動(dòng)與沖擊;2014年02期
4 王立峰;李昊;趙晨;武哲;;一類非齊次線性常微分方程的精細(xì)積分方法[J];科學(xué)技術(shù)與工程;2010年34期
5 梅樹(shù)立;張森文;;基于精細(xì)積分技術(shù)的非線性動(dòng)力學(xué)方程的同倫攝動(dòng)法[J];計(jì)算力學(xué)學(xué)報(bào);2005年06期
6 劉仁昌;李忠芳;任傳波;;波動(dòng)方程的無(wú)網(wǎng)格-精細(xì)積分方法[J];山東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
7 李淵印;金先龍;張曉云;李根國(guó);;結(jié)構(gòu)動(dòng)力響應(yīng)精細(xì)積分級(jí)數(shù)解的并行計(jì)算[J];航空動(dòng)力學(xué)報(bào);2006年05期
8 高索文,吳志剛,王本利,馬興瑞;精細(xì)積分區(qū)段混合能矩陣的一種計(jì)算方法[J];應(yīng)用數(shù)學(xué)和力學(xué);2001年05期
9 譚述君;鐘萬(wàn)勰;;非齊次動(dòng)力方程Duhamel項(xiàng)的精細(xì)積分[J];力學(xué)學(xué)報(bào);2007年03期
10 陳飚松,顧元憲;瞬態(tài)熱傳導(dǎo)方程的子結(jié)構(gòu)精細(xì)積分方法[J];應(yīng)用力學(xué)學(xué)報(bào);2001年01期
相關(guān)博士學(xué)位論文 前1條
1 譚述君;精細(xì)積分方法的改進(jìn)及其在動(dòng)力學(xué)與控制中的應(yīng)用[D];大連理工大學(xué);2009年
相關(guān)碩士學(xué)位論文 前2條
1 劉素娟;精細(xì)積分方法的改進(jìn)[D];中國(guó)民航大學(xué);2014年
2 高小科;結(jié)構(gòu)動(dòng)力方程的精細(xì)計(jì)算方法及其應(yīng)用研究[D];西北工業(yè)大學(xué);2006年
,本文編號(hào):2370811
本文鏈接:http://sikaile.net/kejilunwen/yysx/2370811.html