非線性偏微分方程的非局域?qū)ΨQ、相互作用解與守恒律
[Abstract]:Nonlinear partial differential equation (NPDE) is a long history subject, and it is a very important mathematical model appearing in various fields of science. In this paper, three problems of nonlinear partial differential equations are studied by means of computer algebra. They are nonlocal symmetry, interaction solutions and conservation laws. The content of this paper is divided into the following five parts: the first chapter briefly introduces the solutions of nonlinear partial differential equations and some methods of finding conservation laws, and expounds the main research contents of this paper. The second chapter, elaborated the basic theory knowledge which the thesis needs. In chapter 3, the background knowledge of (21) -dimensional Kaup-Kupershmidt equations is introduced, and then the nonlocal symmetry and interaction solutions of the equations are given. In chapter 4, the research background of the Kadomtsev-Petviashvili potential equation is given, and then many conservation laws of the equation are obtained by using the Noether method. The fifth chapter, the full text proposed the summary and makes the prospect.
【學(xué)位授予單位】:寧波大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175.29
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 任博;俞軍;劉希忠;;Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev-Petviashvili Equation[J];Communications in Theoretical Physics;2016年03期
2 劉希忠;俞軍;任博;楊建榮;;Bcklund transformations for the Burgers equation via localization of residual symmetries[J];Chinese Physics B;2014年11期
3 劉希忠;俞軍;任博;楊建榮;;New interaction solutions of the Kadomtsev Petviashvili equation[J];Chinese Physics B;2014年10期
4 鄭濱;;(G′/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics[J];Communications in Theoretical Physics;2012年11期
5 胡曉瑞;陳勇;黃菲;;Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation[J];Chinese Physics B;2010年08期
6 ;Exact Solutions to (2+1)-Dimensional Kaup-Kupershmidt Equation[J];Communications in Theoretical Physics;2009年11期
7 傅海明;戴正德;;Kaup-Kupershmidt方程的精確解[J];吉首大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期
8 曾昕,張鴻慶;(2+1)維Boussinesq方程的Backlund變換與精確解[J];物理學(xué)報(bào);2005年04期
9 張解放,徐昌智,何寶鋼;變量分離法與變系數(shù)非線性薛定諤方程的求解探索[J];物理學(xué)報(bào);2004年11期
10 ;Variable Separation Approach to Solve Nonlinear Systems[J];Communications in Theoretical Physics;2004年10期
,本文編號(hào):2370247
本文鏈接:http://sikaile.net/kejilunwen/yysx/2370247.html