天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

非線性偏微分方程的非局域?qū)ΨQ、相互作用解與守恒律

發(fā)布時(shí)間:2018-12-10 07:58
【摘要】:非線性偏微分方程是一門歷史久遠(yuǎn)的學(xué)科,它是出現(xiàn)在各個(gè)科學(xué)領(lǐng)域中非常重要的數(shù)學(xué)模型.本文利用計(jì)算機(jī)代數(shù)為輔助工具,對(duì)非線性偏微分方程的三個(gè)問題進(jìn)行了研究,它們分別是非局域?qū)ΨQ、相互作用解以及守恒律.本文內(nèi)容主要分為以下五部分:第一章,對(duì)非線性偏微分方程的解和守恒律的若干求法進(jìn)行了簡(jiǎn)要的介紹,并闡明了本文的主要研究?jī)?nèi)容.第二章,詳細(xì)闡述了論文所需要的基本理論知識(shí).第三章,首先介紹了(2+1)-維Kaup-Kupershmidt方程組的背景知識(shí),然后給出了關(guān)于該方程組的非局域?qū)ΨQ和相互作用解.第四章,首先給出了Kadomtsev-Petviashvili勢(shì)方程的相關(guān)研究背景,再運(yùn)用Noether法得到了許多該方程的守恒律.第五章,對(duì)全文提出總結(jié)并作出展望.
[Abstract]:Nonlinear partial differential equation (NPDE) is a long history subject, and it is a very important mathematical model appearing in various fields of science. In this paper, three problems of nonlinear partial differential equations are studied by means of computer algebra. They are nonlocal symmetry, interaction solutions and conservation laws. The content of this paper is divided into the following five parts: the first chapter briefly introduces the solutions of nonlinear partial differential equations and some methods of finding conservation laws, and expounds the main research contents of this paper. The second chapter, elaborated the basic theory knowledge which the thesis needs. In chapter 3, the background knowledge of (21) -dimensional Kaup-Kupershmidt equations is introduced, and then the nonlocal symmetry and interaction solutions of the equations are given. In chapter 4, the research background of the Kadomtsev-Petviashvili potential equation is given, and then many conservation laws of the equation are obtained by using the Noether method. The fifth chapter, the full text proposed the summary and makes the prospect.
【學(xué)位授予單位】:寧波大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175.29

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 任博;俞軍;劉希忠;;Nonlocal Symmetries and Interaction Solutions for Potential Kadomtsev-Petviashvili Equation[J];Communications in Theoretical Physics;2016年03期

2 劉希忠;俞軍;任博;楊建榮;;Bcklund transformations for the Burgers equation via localization of residual symmetries[J];Chinese Physics B;2014年11期

3 劉希忠;俞軍;任博;楊建榮;;New interaction solutions of the Kadomtsev Petviashvili equation[J];Chinese Physics B;2014年10期

4 鄭濱;;(G′/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics[J];Communications in Theoretical Physics;2012年11期

5 胡曉瑞;陳勇;黃菲;;Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation[J];Chinese Physics B;2010年08期

6 ;Exact Solutions to (2+1)-Dimensional Kaup-Kupershmidt Equation[J];Communications in Theoretical Physics;2009年11期

7 傅海明;戴正德;;Kaup-Kupershmidt方程的精確解[J];吉首大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期

8 曾昕,張鴻慶;(2+1)維Boussinesq方程的Backlund變換與精確解[J];物理學(xué)報(bào);2005年04期

9 張解放,徐昌智,何寶鋼;變量分離法與變系數(shù)非線性薛定諤方程的求解探索[J];物理學(xué)報(bào);2004年11期

10 ;Variable Separation Approach to Solve Nonlinear Systems[J];Communications in Theoretical Physics;2004年10期

,

本文編號(hào):2370247

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2370247.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶cf35d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com