關(guān)于高維統(tǒng)計(jì)模型的似然比檢驗(yàn)
[Abstract]:In big data's time, we often encounter a lot of problems in high-dimensional data. These problems are usually characterized by large dimension p and sample size n, which are usually called "big p, large n" problems. Traditional multivariate statistical analysis can solve the problem of small dimension p or fixed dimension, such as classical chi-square approximation method, likelihood ratio test method, etc. These methods do not solve problems or even fail. Therefore, it is very meaningful to find some new methods to solve high dimensional problems. In this paper, we consider the problem of high dimensional hypothesis testing for two models with large dimension p and sample size n. The first consideration is the test of high dimensional hypothesis with cyclic symmetric covariance structure. Under two slightly different assumptions, by using the continuity theorem of moment generating function and the asymptotic expansion of gamma function, it is proved that in normal population, when the original hypothesis holds, The likelihood ratio statistic converges to a random variable of normal distribution according to the distribution. Then, the high dimensional likelihood ratio test method (HLRT) and chi-square approximation method (BOX), are proposed in this paper. The high dimensional edgeworth expansion method (HEE) and the more accurate high dimensional edgeworth expansion method (AHEE) are simulated. The results show that the proposed HLRT method is better than the BOX method and the HEE method, and is as good as the AHEE method in dealing with high-dimensional data. In chapter 3, the likelihood ratio test of minimum eigenvalue equivalence in high dimensional principal component analysis is studied. Under the original assumption and the assumption of normal population, by using the continuity theorem of the characteristic function and the similar expansion method, the logarithmic form of likelihood ratio statistics is obtained from the normal distribution. The numerical simulation shows that the normal approximation method (HLRT) proposed in this paper is as good as the more accurate high dimensional asymptotic expansion method (AHAE), and in the process of increasing the dimension p, Both of them are more accurate than the chi-square approximation method (Lawley).
【學(xué)位授予單位】:河南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O212.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋立新,趙力;兩個(gè)總體相等的廣義似然比檢驗(yàn)[J];大學(xué)數(shù)學(xué);2005年02期
2 劉瑞銀;郝立麗;郝立柱;;利用似然比檢驗(yàn)進(jìn)行選擇和聚類[J];黑龍江大學(xué)自然科學(xué)學(xué)報(bào);2010年02期
3 夏常弟;李治;;動(dòng)態(tài)系統(tǒng)故障診斷中基于瞬間跳變的似然比方法[J];西南交通大學(xué)學(xué)報(bào);1993年05期
4 唐年勝;均勻樣本中多個(gè)異常值的似然比檢驗(yàn)[J];云南大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年S2期
5 陳穎;;正交飽和設(shè)計(jì)中廣義似然比檢驗(yàn)的勢(shì)函數(shù)(英文)[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年Z1期
6 陳彤生;李紹滋;郭鋒;周昌樂(lè);;基于概率積分變換的似然比檢驗(yàn)的預(yù)測(cè)誤差推理方法[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年05期
7 陳宇明;陳桂景;;混合總體中廣義似然比檢驗(yàn)研究的進(jìn)展(英文)[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期
8 蘇連塔;單邊的廣義似然比檢驗(yàn)及其優(yōu)良性[J];泉州師范學(xué)院學(xué)報(bào);2001年04期
9 勾建偉;王金德;;基于似然比的多步多重比較檢驗(yàn)(英文)[J];南京大學(xué)學(xué)報(bào)數(shù)學(xué)半年刊;2008年02期
10 姚琦偉;;越界概率與序貫似然比檢驗(yàn)簡(jiǎn)介[J];應(yīng)用數(shù)學(xué);1989年01期
相關(guān)博士學(xué)位論文 前3條
1 姜丹丹;大維隨機(jī)矩陣譜理論在多元統(tǒng)計(jì)分析中的應(yīng)用[D];東北師范大學(xué);2010年
2 施三支;部分線性模型中的廣義似然比檢驗(yàn)[D];吉林大學(xué);2007年
3 盧錦;基于粒子濾波的微弱雷達(dá)目標(biāo)檢測(cè)方法[D];西安電子科技大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 儀琳琪;關(guān)于高維統(tǒng)計(jì)模型的似然比檢驗(yàn)[D];河南大學(xué);2017年
2 李濱;基于似然比檢驗(yàn)的方差控制圖[D];遼寧大學(xué);2015年
3 賀昕;基于加權(quán)似然比檢驗(yàn)的方差控制圖[D];遼寧大學(xué);2015年
4 肖南南;兩種高維統(tǒng)計(jì)模型的似然比檢驗(yàn)[D];河南大學(xué);2016年
5 黃梅清;多參數(shù)總體一致性的似然比檢驗(yàn)[D];廣西師范大學(xué);2017年
6 吳榮火;多個(gè)總體一致性的經(jīng)驗(yàn)似然比檢驗(yàn)[D];廣西師范大學(xué);2017年
7 范杰;基于似然比檢驗(yàn)與小波分析的信號(hào)檢測(cè)[D];山東大學(xué);2012年
8 趙明;非標(biāo)準(zhǔn)條件下多水平模型的似然比檢驗(yàn)[D];華中科技大學(xué);2010年
9 胡書麗;高維似然比檢驗(yàn)[D];華中師范大學(xué);2014年
10 賀飛燕;各種似然中結(jié)點(diǎn)問(wèn)題的研究[D];山東大學(xué);2007年
,本文編號(hào):2365385
本文鏈接:http://sikaile.net/kejilunwen/yysx/2365385.html