半無界區(qū)域上雙調(diào)和方程的D-N交替算法
[Abstract]:Based on the theory of natural boundary normalization and the idea of domain decomposition, the D-N alternating algorithm for solving biharmonic equations in semi-unbounded regions is studied in this paper. Firstly, for the biharmonic equation on half plane with grooves, by introducing an artificial boundary 螕 1, the original problem is transformed into a bounded subdomain problem and an unbounded subregion problem with a typical inner boundary. Then, based on the results of natural boundary normalization, the Dirichlet-Neumann (D-N) alternating algorithm based on natural boundary normalization is proposed. The discretization form of D-N alternating algorithm is given by using finite element discretization technique, and the convergence of the algorithm is proved. Finally, some numerical examples are given to verify the feasibility and effectiveness of the algorithm.
【學(xué)位授予單位】:南京師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O175
【參考文獻】
相關(guān)期刊論文 前10條
1 杜其奎,余德浩;凹角型區(qū)域橢圓邊值問題的自然邊界歸化[J];計算數(shù)學(xué);2003年01期
2 余德浩,賈祖朋;橢圓邊界上的自然積分算子及各向異性外問題的耦合算法[J];計算數(shù)學(xué);2002年03期
3 ;A NONOVERLAPPING DOMAIN DECOMPOSITION METHOD FOR EXTERIOR 3-D PROBLEM[J];Journal of Computational Mathematics;2001年01期
4 ;THE OVERLAPPING DOMAIN DECOMPOSITION METHODFOR HARMONIC EQUATION OVER EXTERIORTHREE-DIMENSIONAL DOMAIN[J];Journal of Computational Mathematics;2000年01期
5 鄭權(quán);無界區(qū)域上基于自然邊界歸化的一種重疊型區(qū)域分解法及其離散化[J];計算數(shù)學(xué);1998年01期
6 余德浩;無界區(qū)域非重疊區(qū)域分解算法的離散化及其收斂性[J];計算數(shù)學(xué);1996年03期
7 蔣美群;一個雙調(diào)和方程的區(qū)域分裂法[J];蘇州大學(xué)學(xué)報(自然科學(xué));1994年03期
8 蔣美群,鄧慶平;一個雙調(diào)和方程的Schwarz交替法[J];計算數(shù)學(xué);1994年01期
9 余德浩;無界區(qū)域上Stokes問題的自然邊界元與有限元耦合法[J];計算數(shù)學(xué);1992年03期
10 祝家麟;用邊界積分方程法解平面雙調(diào)和方程的Dirichlet問題[J];計算數(shù)學(xué);1984年03期
,本文編號:2354097
本文鏈接:http://sikaile.net/kejilunwen/yysx/2354097.html