直覺判斷矩陣與區(qū)間互補(bǔ)判斷矩陣的若干性質(zhì)研究
[Abstract]:In the process of comparing schemes or attributes, due to the uncertainty and complexity of objective things, the ambiguity of human cognition and the limitation of their own knowledge, the decision makers often give an uncertain judgment matrix. The common uncertain judgment matrix includes interval judgment matrix, intuitive judgment matrix and so on. The research on these two kinds of judgment matrices is mainly focused on how to judge the consistency of judgment matrices and how to use the consistency of judgment matrices to sort schemes. On the one hand, this paper studies the consistency of intuitionistic judgment matrix and interval complementary judgment matrix, and how to use these consistency to determine the weight of the scheme. On the other hand, due to individual differences, the preference information given by decision-makers to schemes or attributes is often different, such as fuzzy complementary judgment matrix, interval complementary judgment matrix, intuitive judgment matrix. This paper also studies the interval complementary judgment matrix, the method of transforming the intuitionistic judgment matrix into fuzzy complementary judgment matrix and the related properties in the process of transformation. The main contents of this thesis are as follows: (1) the scheme ordering method based on intuitionistic judgement matrix directed graph is studied. According to the characteristics of intuitionistic fuzzy numbers, the concept of directed graph of intuitionistic judgment matrix is given, and the condition that the directed graph of intuitionistic judgment matrix has unique directed path is pointed out. For the intuitionistic judgment matrix with weak transitivity, this paper presents a scheme ordering method based on directed graph of intuitionistic judgment matrix. (2) A new definition of additive consistency of intuitionistic judgment matrix and a method of determining scheme weight are given. It is shown that there is no strong or weak relation between additive consistency of intuitionistic judgment matrix and weak transitivity of intuitionistic judgment matrix by counterexample, and the deficiency of traditional definition of additive consistency is analyzed. According to the characteristics of intuitionistic fuzzy numbers, a new definition of additive consistency of intuitionistic judgment matrix is proposed and applied to the transfer method to determine the weight of the scheme. In addition, a new definition of additive consistency of intuitionistic judgment matrix is redefined from the angle of the relationship between intuitionistic judgment matrix and weight. (3) Quasi-consistency of interval complementary judgment matrix is studied. In this paper, the additive consistency and product consistency of fuzzy complementary judgment matrix are analyzed. It is found that they contain the characteristics of relative advantage degree. By using this characteristic, the concepts of quasi-additive consistency and quasi-product consistency of interval complementary judgment matrix are given. It is shown that they are essentially the same, so they are uniformly called quasi consistency of interval complementary judgment matrix. For the quasi-consistent interval complementary judgment matrix and the general interval complementary judgment matrix, the model is established to calculate the interval number type weights. (4) the interval complementary judgment matrix is studied. The intuitionistic judgment matrix is transformed into the correlation property of fuzzy complementary judgment matrix. Aiming at fuzzy complementary judgment matrix, interval complementary judgment matrix and intuitionistic judgment matrix, this paper gives a method of how to unify and assemble these three preference relations. Firstly, the characteristics of fuzzy complementary judgment matrix are analyzed, and the interval complementary judgment matrix and intuitionistic judgment matrix are transformed into fuzzy complementary judgment matrix by using this characteristic, thus realizing the uniformity of these three kinds of judgment matrices. Then the rationality of the conversion process is studied.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:O151.21
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孔松泉,達(dá)慶利,徐澤水;互補(bǔ)判斷矩陣排序的廣義χ~2法[J];東南大學(xué)學(xué)報(自然科學(xué)版);2002年04期
2 樊治平,姜艷萍;互補(bǔ)判斷矩陣一致性改進(jìn)方法[J];東北大學(xué)學(xué)報;2003年01期
3 樊治平,姜艷萍;互補(bǔ)判斷矩陣中導(dǎo)入新元素的強(qiáng)保序條件[J];系統(tǒng)工程理論與實踐;2003年03期
4 侯福均,吳祈宗;模糊數(shù)互補(bǔ)判斷矩陣的加性一致性[J];北京理工大學(xué)學(xué)報;2004年04期
5 徐澤水;殘缺互補(bǔ)判斷矩陣[J];系統(tǒng)工程理論與實踐;2004年06期
6 陳華友,周禮剛;互補(bǔ)判斷矩陣排序的最小偏差法的性質(zhì)[J];運(yùn)籌與管理;2004年03期
7 徐澤水;基于殘缺互補(bǔ)判斷矩陣的交互式群決策方法[J];控制與決策;2005年08期
8 侯福均,吳祈宗;Ⅰ型不確定數(shù)互補(bǔ)判斷矩陣的一致性和排序研究[J];系統(tǒng)工程理論與實踐;2005年10期
9 侯福均,吳祈宗;不確定數(shù)互補(bǔ)模糊偏好關(guān)系與不確定數(shù)互補(bǔ)判斷矩陣[J];北京理工大學(xué)學(xué)報;2005年10期
10 周宏安;劉三陽;岳惠萍;;基于不確定互補(bǔ)判斷矩陣的多目標(biāo)決策方法研究[J];數(shù)學(xué)的實踐與認(rèn)識;2006年11期
相關(guān)會議論文 前8條
1 聶鳳鶴;聶鳳飛;;基于熵的互補(bǔ)判斷矩陣一致性問題[A];第九屆中國不確定系統(tǒng)年會、第五屆中國智能計算大會、第十三屆中國青年信息與管理學(xué)者大會論文集[C];2011年
2 徐澤水;;互補(bǔ)判斷矩陣排序的最小夾角法[A];第四屆中國青年運(yùn)籌與管理學(xué)者大會論文集[C];2001年
3 侯福均;吳祈宗;;基于期望值矩陣的模糊數(shù)互補(bǔ)判斷矩陣一致性研究[A];中國運(yùn)籌學(xué)會第七屆學(xué)術(shù)交流會論文集(中卷)[C];2004年
4 胡宏宇;朱建軍;丁葉;;殘缺互補(bǔ)判斷矩陣的可能值推斷、排序方法及應(yīng)用[A];第十二屆中國管理科學(xué)學(xué)術(shù)年會論文集[C];2010年
5 侯福均;吳祈宗;;基于目標(biāo)規(guī)劃的區(qū)間數(shù)互補(bǔ)判斷矩陣方案排序[A];第三屆不確定系統(tǒng)年會論文集[C];2005年
6 朱建軍;劉思峰;方志耕;;基于區(qū)間灰數(shù)的互補(bǔ)判斷矩陣集結(jié)方法研究[A];2006年灰色系統(tǒng)理論及其應(yīng)用學(xué)術(shù)會議論文集[C];2006年
7 張薇薇;金菊良;張禮兵;;基于遺傳算法的三角模糊數(shù)互補(bǔ)判斷矩陣排序方法[A];第四屆全國決策科學(xué)/多目標(biāo)決策研討會論文集[C];2007年
8 占濟(jì)舟;呂躍進(jìn);成先娟;;關(guān)于模糊互補(bǔ)判斷的標(biāo)度問題[A];中國系統(tǒng)工程學(xué)會決策科學(xué)專業(yè)委員會第六屆學(xué)術(shù)年會論文集[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 涂振坤;直覺判斷矩陣與區(qū)間互補(bǔ)判斷矩陣的若干性質(zhì)研究[D];合肥工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前8條
1 王艷青;判斷矩陣有關(guān)權(quán)重的求解方法研究[D];廣西大學(xué);2011年
2 黃靚;不完全信息下的排序[D];西南大學(xué);2009年
3 史文雷;區(qū)間數(shù)互補(bǔ)判斷矩陣的理論問題研究[D];廣西大學(xué);2007年
4 洪麗雙;模糊互補(bǔ)判斷矩陣的一致性研究[D];上海交通大學(xué);2012年
5 胡明明;區(qū)間型模糊多屬性決策的若干問題研究[D];廣西大學(xué);2012年
6 田文千;區(qū)間型多屬性決策判斷矩陣的一致性和排序研究及應(yīng)用[D];重慶大學(xué);2009年
7 郝穎娟;有偏好信息的不確定多屬性決策途徑[D];曲阜師范大學(xué);2009年
8 劉坦;判斷矩陣的一致性和權(quán)重向量的求解方法研究[D];曲阜師范大學(xué);2008年
,本文編號:2353139
本文鏈接:http://sikaile.net/kejilunwen/yysx/2353139.html