基于任意多項(xiàng)式逼近的不確定量化問(wèn)題的壓縮感知算法的研究
[Abstract]:In recent years, the calculation of uncertain quantization problems has been paid more and more attention. How to quantify the effect of random input on system output is the core problem of uncertainty quantization. Generalized orthogonal polynomial (generalized Polynomial Chaos) approximation in random parameter spaces is an effective method, which has been successfully applied to the computation of uncertain quantization problems. However, in many cases, the random parameters we get are discrete values, which means that the discrete measure is more suitable to solve our problem from the point of view of modeling. Therefore, in this paper, we focus on the approximation of the output of the stochastic model by any orthogonal polynomial (a PC) based on the discrete measure when the random parameter is subjected to the discrete probability measure. It is expected to provide a fast and effective calculation method for this problem. We first introduce the methods of generating orthogonal arbitrary polynomials under discrete measure, including Nowak method, Stieltjes method and Lanczos method. Then we use the random collocation method based on the nonconvex contractive perception to deal with some common uncertain quantization problems with discrete random input by taking any polynomial of orthogonal discrete measure as the basis function. Specifically, we give a sparse grid random collocation method based on arbitrary orthogonal polynomial approximation for partial differential equations with random input. A random collocation method for solving some kinds of nonconvex contractive perception algorithms with stochastic input partial differential equations by arbitrary polynomial expansion is studied. The basic framework of smoothed-log optimization algorithm, smoothed-l_q optimization algorithm and l_1-l_2 algorithm for solving the sparse approximation of polynomial expansion is presented. In the part of numerical experiment, we first investigate the sparse polynomial function, and compare the performance of three kinds of non-convex compression perceptual solver based on three kinds of non-convex compression perceptual solver by calculating the success rate of reconstruction. Then we consider the sparse polynomial approximation of the function. By calculating the root mean square error of the function, we show that a PC is used as the basis function, and the nonconvex contractive perceptual random collocation method can effectively approximate the objective function. This provides a basis for the approximation of stochastic responses to the subsequent solutions of stochastic differential equations. Then, we consider the solution of ODE with random input. Finally, through the numerical simulation of fractional diffusion equation with random source term, we compare the random collocation method based on sparse mesh with the random collocation method based on non-convex compression perception. The random collocation method based on non-convex compression sensing is much less than the number of sample points used in sparse mesh under the same precision requirement, which greatly improves the computational efficiency. All the results show that for a given random variable with arbitrary discrete measure, the approximation of the random response of the system under any orthogonal polynomial can be effectively solved by a random collocation method based on nonconvex contractive perception. At the same time, in the three non-convex compression-aware solvers we selected (smoothed-log optimization algorithm, smoothed-l_q optimization algorithm and l_1-l_2 algorithm), smoothed-Log shows great advantages in all numerical examples. This provides a reference for the selection of solvers for solving large-scale stochastic problems using the stochastic collocation method based on nonconvex compression perception.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O241
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王國(guó)瑾,胡倩倩;一類有理Bézier曲線及其求積求導(dǎo)的多項(xiàng)式逼近[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯(中文版);2004年01期
2 張建國(guó),鄒杰濤,吳潤(rùn)衡;有關(guān)多項(xiàng)式逼近的兩個(gè)性質(zhì)[J];華北工學(xué)院學(xué)報(bào);2004年06期
3 陳文喻;汪國(guó)昭;;反函數(shù)的混合多項(xiàng)式逼近[J];浙江大學(xué)學(xué)報(bào)(理學(xué)版);2006年05期
4 常晶;劉冬;;非線性常微分方程的多項(xiàng)式逼近[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2010年03期
5 崔振文;;關(guān)于擬分段單調(diào)多項(xiàng)式逼近問(wèn)題[J];河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1981年01期
6 吳學(xué)謀;;分區(qū)與統(tǒng)一多項(xiàng)式逼近——數(shù)學(xué)中的轉(zhuǎn)化概念(Ⅲ)[J];武漢大學(xué)學(xué)報(bào)(自然科學(xué)版);1977年03期
7 謝庭藩;多項(xiàng)式逼近函數(shù)的幾個(gè)問(wèn)題[J];數(shù)學(xué)進(jìn)展;1984年01期
8 張偉;基于多項(xiàng)式逼近的學(xué)習(xí)式搜索[J];遼寧大學(xué)學(xué)報(bào)(自然科學(xué)版);1995年S1期
9 王小春;Bernstein多項(xiàng)式逼近的一個(gè)定理[J];武漢化工學(xué)院學(xué)報(bào);1996年01期
10 肖秋菊;L~ψ空間中的多項(xiàng)式逼近[J];衡陽(yáng)師范學(xué)院學(xué)報(bào)(自然科學(xué));2001年06期
相關(guān)會(huì)議論文 前2條
1 王巧龍;王鉦旋;許志聞;李海軍;;基于三次Bernstein多項(xiàng)式逼近的數(shù)字圖像壓縮算法[A];中國(guó)儀器儀表學(xué)會(huì)第六屆青年學(xué)術(shù)會(huì)議論文集[C];2004年
2 吳存利;馬曉平;方同;;Gegenbauer多項(xiàng)式逼近法的一個(gè)補(bǔ)注[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
相關(guān)碩士學(xué)位論文 前7條
1 劉亮亮;基于任意多項(xiàng)式逼近的不確定量化問(wèn)題的壓縮感知算法的研究[D];上海師范大學(xué);2017年
2 楊潔;基于M(o|¨)bius變換的二次曲面的雙四次多項(xiàng)式逼近[D];浙江工商大學(xué);2017年
3 常晶;非線性常微分方程多項(xiàng)式逼近[D];吉林大學(xué);2007年
4 林貞;有理Bézier曲線的多項(xiàng)式逼近研究[D];合肥工業(yè)大學(xué);2014年
5 孟祥國(guó);有關(guān)有理曲線曲面的多項(xiàng)式逼近問(wèn)題研究[D];大連理工大學(xué);2003年
6 張瑞崗;基于KAM理論的頻率映射分析及廣義多項(xiàng)式逼近理論[D];內(nèi)蒙古大學(xué);2013年
7 劉永樂(lè);基于非凸的壓縮感知隨機(jī)配置方法求解帶有隨機(jī)輸入的SPDEs[D];上海師范大學(xué);2017年
,本文編號(hào):2349847
本文鏈接:http://sikaile.net/kejilunwen/yysx/2349847.html