不確定隨機網(wǎng)絡(luò)下的度約束最小生成樹問題
[Abstract]:The minimum spanning tree problem is one of the basic problems in network optimization. It is widely used in communication network, transportation network, logistics network and so on. In order to reduce the vulnerability of nodes in circuit design, Narula and Ho proposed the minimum spanning tree problem with degree constraints in 1980. The aim of this problem is to find the spanning tree of minimum weight, and the degree of each node satisfies the requirement of given constraints. In classical networks, all weights are known constants, so the classical algorithm can be used to solve the problem. However, in real networks, the weights in networks are indeterminate due to the existence of indeterminate factors. In order to describe indeterminate networks, Frank and Hakimi first proposed the concept of stochastic networks in 1965, the purpose of which is to describe the stochastic phenomena of communication networks. In 2010, Knowles and David first introduced the degree constrained minimum spanning tree problem into stochastic networks, but the estimation of weights in this method relies heavily on historical data. However, in real networks, many networks do not have historical data, so Liu put forward the concept of uncertain networks in 2010. In this paper, we study the minimum spanning tree problem of degree constraints in uncertain networks. Based on the different comparison principles of uncertain variables, I propose three uncertain programming models: uncertain expectation degree constrained minimum spanning tree model. Uncertainty-degree constraint minimum spanning tree model and uncertain maximum opportunity constraint minimum spanning tree model. In this paper, an improved genetic solution model is used and a numerical example is given. In real life networks, some weights have no historical data, some weights have historical data, so uncertainty and randomness often appear in a complex network at the same time. Recently, Liu put forward the concept of uncertain stochastic network on the basis of uncertain network. In this paper, the degree constrained minimum spanning tree problem for uncertain stochastic networks is studied for the first time, and a concept of ideal opportunity distribution is proposed. In order to find the degree constraint spanning tree which is closest to the ideal chance distribution as the minimum spanning tree of degree constraint, an uncertain stochastic programming model is established. Finally, a numerical algorithm is presented to solve the model.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O157.5
【相似文獻】
相關(guān)期刊論文 前10條
1 毛華;史田敏;高瑞;;求最小生成樹的矩陣算法[J];鄭州大學(xué)學(xué)報(理學(xué)版);2013年04期
2 石少儉,賀紅,趙然;最小生成樹邊與邊的權(quán)的調(diào)整[J];山東理工大學(xué)學(xué)報(自然科學(xué)版);2004年05期
3 何忠華;孟祥瑞;;基于節(jié)點編碼的最小生成樹算法[J];黑龍江科技信息;2008年34期
4 夏蘭芳;胡鵬;白軼多;黃夢龍;;基于地圖代數(shù)的最小生成樹實現(xiàn)方法[J];測繪科學(xué);2008年01期
5 曲建華;崔巖;徐廣印;姚新勝;應(yīng)繼來;;基于最小生成樹的河南省高速公路多義性路徑標識站設(shè)置[J];河南科學(xué);2012年05期
6 曹煥光;用最小生成樹存貯和檢索數(shù)據(jù)[J];山西大學(xué)學(xué)報(自然科學(xué)版);1985年03期
7 閻樹柏,張曄,王明東;最小生成樹的一個問題[J];吉林林學(xué)院學(xué)報;1994年04期
8 汪遐昌;最小生成樹問題[J];成都師專學(xué)報;1996年03期
9 汪遐昌;最小生成樹問題[J];四川師范大學(xué)學(xué)報(自然科學(xué)版);1997年01期
10 姚坤;劉希玉;李菲菲;;基于Global optimization尋找無向完全圖的最小生成樹[J];山東科學(xué);2006年02期
相關(guān)會議論文 前10條
1 黃宜真;張世R,
本文編號:2342340
本文鏈接:http://sikaile.net/kejilunwen/yysx/2342340.html