線性混合效應(yīng)模型的正態(tài)性檢驗(yàn)
[Abstract]:Longitudinal data often appear in the biological, economic, meteorological, industrial and other fields. In the study of continuous longitudinal data, the ordinary linear regression model obviously can not explain the data very well. People usually use mixed effect model with random effect term to model data. We often assume that the random error terms and the random effect terms in the model are normally distributed. On this basis, we can easily study the properties of the parameters by using the methods of maximum likelihood estimation (MLE) and restricted maximum likelihood estimation (RMLE). And come to a good conclusion. However, it is difficult to satisfy the normal hypothesis in the actual data. If the data model is constructed regardless of the conditional requirements of the normality assumption, the wrong conclusion will be obtained. In this paper, we mainly study the normality test of random errors and the parameter estimation of fixed effects in the linear mixed effect model. Because the random error is not observable, it is necessary to estimate the random error before the normality test, which requires the estimation of the random effect and the fixed effect. In this paper, the random effect term is removed by QR decomposition method, and then the fixed effect of the model is selected and estimated by SCAD (Smoothly clipped absoluted deviation) method. Theoretical studies show that the estimators obtained by the SCAD method are square n- consistent under certain assumptions. Secondly, the BHEP (Baringhaus-Henze-Epps-Pulley) multidimensional normality test method is extended to construct test statistics for the estimation of random errors. It is found that the test statistics constructed in this paper according to the BHEP method converge to a Gao Si process with zero mean asymptotically under the original hypothesis, and the effectiveness of the proposed method is verified by simulation studies.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:O212.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 施能,陳輝;論我國(guó)季、月降水量的正態(tài)性和正態(tài)化[J];氣象;1988年03期
2 梁小筠;我國(guó)正在制訂“正態(tài)性檢驗(yàn)”的新標(biāo)準(zhǔn)[J];應(yīng)用概率統(tǒng)計(jì);2002年03期
3 許滌龍,陳春暉;中國(guó)股市有效性分析中的正態(tài)性檢驗(yàn)[J];統(tǒng)計(jì)與信息論壇;2004年06期
4 葉仁玉;正態(tài)性檢驗(yàn)在教學(xué)質(zhì)量監(jiān)控中的應(yīng)用[J];安慶師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年03期
5 汪政紅;周清志;;兩種多元正態(tài)性檢驗(yàn)方法的應(yīng)用和比較[J];中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期
6 梁小筠;正態(tài)性檢驗(yàn)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);1988年01期
7 田俊;數(shù)據(jù)正態(tài)性簡(jiǎn)易判斷方法及偏態(tài)數(shù)據(jù)冪變換法[J];中國(guó)公共衛(wèi)生;2003年12期
8 周洪偉;;正態(tài)性檢驗(yàn)的幾種常用的方法[J];南京曉莊學(xué)院學(xué)報(bào);2012年03期
9 王斌會(huì),徐勇勇;正態(tài)性檢驗(yàn)的圖示方法及其應(yīng)用[J];數(shù)理統(tǒng)計(jì)與應(yīng)用概率;1996年03期
10 梁小筠;正態(tài)性檢驗(yàn)(一)[J];上海統(tǒng)計(jì);2000年10期
相關(guān)會(huì)議論文 前1條
1 胡文東;陳曉光;李艷春;鄭廣芬;邵建;張智;納麗;;寧夏月、季、年降水量正態(tài)性分析[A];中國(guó)氣象學(xué)會(huì)2007年年會(huì)氣候?qū)W分會(huì)場(chǎng)論文集[C];2007年
相關(guān)碩士學(xué)位論文 前4條
1 田禹;基于偏度和峰度的正態(tài)性檢驗(yàn)[D];上海交通大學(xué);2012年
2 紀(jì)小玲;正態(tài)性檢驗(yàn)法在試卷評(píng)估中的應(yīng)用[D];蘭州大學(xué);2012年
3 董玲;線性混合效應(yīng)模型的正態(tài)性檢驗(yàn)[D];華東師范大學(xué);2015年
4 信亞楠;基于正態(tài)分布的多元統(tǒng)計(jì)技術(shù)在NBA球員分析中的應(yīng)用[D];中南大學(xué);2014年
,本文編號(hào):2335715
本文鏈接:http://sikaile.net/kejilunwen/yysx/2335715.html