基于仿射傳播的復雜網(wǎng)絡社區(qū)發(fā)現(xiàn)算法研究
[Abstract]:Many studies have shown that there is a common community structure in complex networks, that is, the nodes within the community are closely connected, but the node connections between the communities are relatively sparse. The community structure within complex networks has very important theoretical significance and application value, which can help people understand the functions of complex networks, discover the potential laws in complex networks and predict the behavior of complex networks. This paper mainly focuses on the complex network community discovery and affine propagation algorithms, including the following three aspects: first, a community discovery algorithm based on structural similarity affine propagation (SS-FAP) is proposed. Firstly, the structural similarity is selected as the similarity measure between nodes, and an optimized method is used to calculate the similarity matrix. Secondly, the calculated similarity matrix is used as input, and the fast affine propagation algorithm is used to cluster. Finally, the final community structure set is obtained. The experimental results show that SS-FAP has good community discovery ability and high quality community structure both on simulated and real networks. Secondly, a community discovery algorithm (MAP). Based on modular affine propagation is proposed. The main idea of the algorithm is to embed the modular degree function Q into the iterative process of the AP algorithm and obtain the optimal community discovery result based on the modularity optimization. The experimental results show that compared with the traditional LPA algorithm, FN algorithm, BGLL algorithm and the original AP algorithm, the MAP algorithm can find the community structure in the network more effectively. Finally, a community discovery algorithm prototype system is implemented. The prototype system mainly implements SS-FAP algorithm, MAP algorithm, LPA algorithm and four community discovery evaluation criteria, which are normalized mutual information, FM index, accuracy and module degree, respectively. And the force-guided layout algorithm is used to visualize the network.
【學位授予單位】:中國礦業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O157.5
【參考文獻】
相關(guān)期刊論文 前10條
1 劉大有;金弟;何東曉;黃晶;楊建寧;楊博;;復雜網(wǎng)絡社區(qū)挖掘綜述[J];計算機研究與發(fā)展;2013年10期
2 黃健斌;鐘翔;孫鶴立;茆婉婷;;基于相似性模塊度最大約束標記傳播的網(wǎng)絡社團發(fā)現(xiàn)算法[J];北京大學學報(自然科學版);2013年03期
3 黃健斌;白楊;康劍梅;鐘翔;張鑫;孫鶴立;;一種基于同步動力學模型的網(wǎng)絡社團發(fā)現(xiàn)方法[J];計算機研究與發(fā)展;2012年10期
4 林旺群;盧風順;丁兆云;吳泉源;周斌;賈焰;;基于帶權(quán)圖的層次化社區(qū)并行計算方法[J];軟件學報;2012年06期
5 金弟;楊博;劉杰;劉大有;何東曉;;復雜網(wǎng)絡簇結(jié)構(gòu)探測——基于隨機游走的蟻群算法[J];軟件學報;2012年03期
6 劉旭;易東云;;基于局部相似性的復雜網(wǎng)絡社區(qū)發(fā)現(xiàn)方法[J];自動化學報;2011年12期
7 馮曉磊;于洪濤;;基于流形距離的半監(jiān)督近鄰傳播聚類算法[J];計算機應用研究;2011年10期
8 劉旭;易東云;;基于向量劃分的復雜網(wǎng)絡社區(qū)結(jié)構(gòu)發(fā)現(xiàn)[J];中國科學:物理學 力學 天文學;2011年09期
9 趙卓翔;王軼彤;田家堂;周澤學;;社會網(wǎng)絡中基于標簽傳播的社區(qū)發(fā)現(xiàn)新算法[J];計算機研究與發(fā)展;2011年S3期
10 黃發(fā)良;肖南峰;;基于線圖與PSO的網(wǎng)絡重疊社區(qū)發(fā)現(xiàn)[J];自動化學報;2011年09期
相關(guān)碩士學位論文 前4條
1 王淑靖;非重疊社區(qū)發(fā)現(xiàn)中近鄰傳播算法的研究與應用[D];中國礦業(yè)大學;2016年
2 周然然;社會網(wǎng)絡中局部社區(qū)發(fā)現(xiàn)算法研究[D];中國礦業(yè)大學;2015年
3 包偉偉;無線傳感器網(wǎng)絡低延遲鄰居發(fā)現(xiàn)算法研究[D];中國礦業(yè)大學;2015年
4 石夢雨;基于改進標簽傳播算法的社區(qū)挖掘研究[D];中國礦業(yè)大學;2015年
,本文編號:2321392
本文鏈接:http://sikaile.net/kejilunwen/yysx/2321392.html