線性模型中Bayes線性無(wú)偏最小方差估計(jì)及其小樣本性質(zhì)
[Abstract]:In statistics, linear model is a simple and widely used model, it has been widely used in business, industry, economics and other important fields. When we study the linear model, we first consider the parameter estimation, and the least square estimation is the earliest one. However, with the increase of the number of random variables, the least square estimation will have the defect of increasing the mean square error. Therefore, Bayes linear unbiased minimum variance estimators and a series of biased estimators, such as Stein estimators, James-Stein estimators, ridge estimators, Liu estimators, are proposed. In this paper, the parameter estimation problem in linear model is studied. Many scholars have studied the excellent properties of Bayes linear unbiased minimum variance estimation, and compared it with the least square estimation, the generalized least square estimate and the ridge estimate. In this paper, on the basis of previous studies, we discuss the relationship between Bayes linear unbiased minimum variance estimator and Liu estimator and James-Stein estimator. It is mainly divided into the following parts: firstly, the basic knowledge of linear model and the development process of several common estimators are introduced in the introduction, in which the Bayes linear unbiased minimum variance estimation is introduced in detail. In chapter 2, we discuss the properties of Bayes linear unbiased least variance estimator under the generalized mean square error criterion, and compare it with Liu estimator and James-Stein estimator. In chapter 3, we continue to discuss the properties of Bayes linear unbiased minimum variance estimator under the balanced loss risk function, and compare it with the risk function of Liu estimate and James-Stein estimate.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O212
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 劉謝進(jìn);繆柏其;;Bayes線性無(wú)偏最小方差估計(jì)相對(duì)于嶺估計(jì)的優(yōu)良性[J];華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年05期
2 劉謝進(jìn);繆柏其;;平衡損失下Bayes線性無(wú)偏最小方差估計(jì)的優(yōu)良性[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);2011年06期
3 劉謝進(jìn);繆柏其;;線性模型中Bayes線性無(wú)偏最小方差估計(jì)的優(yōu)良性[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);2009年03期
4 霍涉云;張偉平;韋來(lái)生;;一類(lèi)線性模型參數(shù)的Bayes估計(jì)及其優(yōu)良性[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);2007年07期
5 劉謝進(jìn),朱允民;最優(yōu)加權(quán)最小二乘估計(jì)與線性無(wú)偏最小方差估計(jì)性能比較[J];四川大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年05期
6 陳希孺;低階矩條件下線性回歸最小二乘估計(jì)弱相合的充要條件[J];中國(guó)科學(xué)(A輯 數(shù)學(xué) 物理學(xué) 天文學(xué) 技術(shù)科學(xué));1995年04期
,本文編號(hào):2319277
本文鏈接:http://sikaile.net/kejilunwen/yysx/2319277.html