動(dòng)力系統(tǒng)中的回復(fù)性與混沌行為
發(fā)布時(shí)間:2018-11-08 06:40
【摘要】:本文主要分為兩部分.第一部分討論了拓?fù)浒肴鹤饔蒙系囊恢禄貜?fù)運(yùn)動(dòng).G(?)X表示拓?fù)浒肴篏在緊致度量空間X上的一個(gè)拓?fù)渥饔?我們證明了對(duì)X中任意給定的點(diǎn)x,如下兩個(gè)與周期性密切相關(guān)的回復(fù)性是相互等價(jià)的:·對(duì)x的任意一個(gè)鄰域U,回復(fù)時(shí)間集{g ∈ G:gx ∈ U}是G中Furstenburg意義下的syndetic集.·對(duì)任意ε0,存在G中有限子集K,使得對(duì)G中任意一點(diǎn)9,軌道弧K[gx]的ε-鄰域包含整個(gè)軌道G[x].這推廣了當(dāng)群G為離散群Z或連續(xù)群R情形時(shí)經(jīng)典意義下的Birkhoff定理.此外,我們構(gòu)造了一個(gè)反例,說(shuō)明當(dāng)X是一個(gè)完備度量空間而非局部緊度量空間時(shí),一致回復(fù)性與Bohr幾乎周期性是不等價(jià)的.第二部分討論了dendrite上群作用的Auslander-Yorke混沌和敏感性.首先,我們證明了dendrite上的敏感群作用必包含一個(gè)Auslander-Yorke混沌子系統(tǒng).其次,利用上述結(jié)論,我們證明dendrite上的敏感群作用必然存在一個(gè)ping-pong game;并由此推出任一有限生成群在dendrite上的敏感作用都有正幾何熵,并且dendrite上不存在敏感的冪零群作用.最后,我們構(gòu)造了兩個(gè)例子:dendrite上敏感非可擴(kuò)的可解群作用和圓環(huán)上不含Auslander-Yorke混沌子系統(tǒng)的敏感群作用.
[Abstract]:This paper is divided into two parts. In the first part, we discuss a topological action of a topological semigroup G on a compact metric space X. We prove that for any given point x in X, the following two recoveries closely related to periodicity are equivalent to each other: for any neighborhood of x, U, The recovery time set {g 鈭,
本文編號(hào):2317673
[Abstract]:This paper is divided into two parts. In the first part, we discuss a topological action of a topological semigroup G on a compact metric space X. We prove that for any given point x in X, the following two recoveries closely related to periodicity are equivalent to each other: for any neighborhood of x, U, The recovery time set {g 鈭,
本文編號(hào):2317673
本文鏈接:http://sikaile.net/kejilunwen/yysx/2317673.html
最近更新
教材專著