關(guān)于緊算子的奇異值不等式和可測(cè)算子的范數(shù)不等式的研究
[Abstract]:Operator theory plays an important role in mathematics and other sciences and has wide applications. The bounded linear operator theory on Hilbert space and Banach space is the basis of operator theory and operator algebra. Compact operators and measurable operators are two kinds of important operators. The singular value of compact operator is one of the hotspots in operator theory. Non-commutative Lp space is an important part of functional analysis. The study of estimators and their norm inequalities is one of the important research fields of operator theory. In recent years, many scholars have made extensive research on the singular values and norms of compact operators and estimators, and have made a lot of achievements. In this paper, the singular value inequalities of compact operators and the norm inequalities of estimators are further studied by means of operator theory and related knowledge and techniques of operator algebra. In this paper, three kinds of problems are studied. One is to study singular value inequalities of compact operators on Hilbert spaces by using the technique of partition matrix of operators. Second, by using the properties of von Neumann algebra, we study some properties of noncommutative LNP spaces. Thirdly, by using the properties of measurable subunits on von Neumann algebra M, the norm inequality of measurable subunits on M is studied. The main content of this paper is divided into four parts. The first part introduces the functional analysis, the origin and development of operator theory and operator algebra, then introduces the research status of compact operators and measurable operators at home and abroad, and finally introduces the contents of this paper. Objective and related preparatory knowledge. In the second part, the singular value inequalities of compact operators on Hilbert spaces are studied. Firstly, some related concepts and properties are introduced, then some singular value inequalities of compact operators are obtained by using the technique of partition matrix of operators and the properties of compact operators. In the third part, by using the properties of von Neumann algebra, we study some properties of noncommutative LNP spaces. In the fourth part, we first introduce the norm of the estimator and its properties, then we study a series of norm inequalities, and finally prove the equivalence of the singular value inequalities of several estimators.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O177
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李亞亞;王昌;;緊算子理論成因探析[J];自然辯證法研究;2014年12期
2 Tulenov K;Kanguzhin B E;Mamaeva V;;τ-可測(cè)算子在非交換L_p范數(shù)下平行四邊形公式(英文)[J];新疆大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
3 桂楚;周其生;;關(guān)于交換子奇異值不等式的幾個(gè)結(jié)論[J];安慶師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2011年03期
4 李清;;初等算子的奇異值不等式研究[J];重慶文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2010年05期
5 王運(yùn)霞;周佳;吳田峰;;τ-可測(cè)正算子生成的交換子的若干不等式[J];應(yīng)用泛函分析學(xué)報(bào);2010年01期
6 馬偉;;一類初等算子的范數(shù)等式和奇異值不等式[J];黑龍江科技學(xué)院學(xué)報(bào);2010年01期
7 周佳;王運(yùn)霞;吳田峰;;τ-可測(cè)算子A*XB的一個(gè)Schwarz不等式(英文)[J];新疆大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
8 劉曉冀;;關(guān)于矩陣的奇異值偏序[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2008年02期
9 波拉提汗;吐?tīng)柕聞e克;;關(guān)于換位子范數(shù)的若干不等式(英文)[J];應(yīng)用泛函分析學(xué)報(bào);2007年01期
10 方莉;王洪濤;白維祖;;關(guān)于算子譜半徑與范數(shù)的若干不等式[J];西北大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期
相關(guān)博士學(xué)位論文 前1條
1 鄒黎敏;算子L(?)wner偏序與矩陣奇異值不等式[D];重慶大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 段光才;幾類算子不等式的研究[D];河南師范大學(xué);2014年
2 師光華;幾類算子不等式的研究[D];河南師范大學(xué);2012年
3 雷陽(yáng);關(guān)于Hilbert空間上的算子不等式及相關(guān)問(wèn)題的研究[D];東華大學(xué);2010年
4 周佳;非交換Banach函數(shù)空間的若干不等式[D];新疆大學(xué);2008年
5 連鐵艷;關(guān)于若干算子不等式的研究及應(yīng)用[D];陜西師范大學(xué);2005年
6 龐永鋒;關(guān)于算子偏序及算子不等式的若干研究[D];陜西師范大學(xué);2004年
,本文編號(hào):2282236
本文鏈接:http://sikaile.net/kejilunwen/yysx/2282236.html