幾類Caputo分?jǐn)?shù)階方程的邊值問(wèn)題解的存在性
發(fā)布時(shí)間:2018-10-08 07:40
【摘要】:分?jǐn)?shù)階微分方程和差分方程不僅對(duì)科學(xué)、工程、化學(xué)、物理、生物等領(lǐng)域的許多問(wèn)題給出了合理的描述,而且應(yīng)用十分廣泛。例如擴(kuò)音器進(jìn)行反饋和分析、熱傳導(dǎo)領(lǐng)域和流體學(xué)等。因此研究分?jǐn)?shù)階方程邊值問(wèn)題有著重要的意義。本文的主要研究工作簡(jiǎn)要敘述如下:1.研究了下面非線性分?jǐn)?shù)階微分方程邊值問(wèn)題其中f:[0,+∞)×R→[0,+∞)是連續(xù)的,α∈(2,3],CD0+α是標(biāo)準(zhǔn)的Caputo微分。通過(guò)使用S chauder不動(dòng)點(diǎn)理論和錐拉伸與錐壓縮不動(dòng)點(diǎn)定理得到上述邊值問(wèn)題的一些正解的存在性結(jié)果。這里的解是錐的內(nèi)點(diǎn)。最后,通過(guò)三個(gè)例子驗(yàn)證了主要結(jié)論的有效性。2.研究了下面帶有非局部條件的Caputo分?jǐn)?shù)階差分方程系統(tǒng)t∈[0,b+1]N.:={0,1,...,b+1},b3,2vj≤3,fj:Rn→R是給定的連續(xù)函數(shù),φj,ψj,φj:Rb+4→R對(duì)于每個(gè)j(j=1,2…n)是給定的連續(xù)函數(shù),△Cvy(t)是標(biāo)準(zhǔn)的Caputo差分。我們利用Banach不動(dòng)點(diǎn)原理Brouwer不動(dòng)點(diǎn)原理得到上述邊值問(wèn)題的一些解的存在性結(jié)果。最后,提供了兩個(gè)例子驗(yàn)證了主要結(jié)論的有效性。3.研究了以下Caputo分?jǐn)?shù)階差分方程邊值問(wèn)題其中,t∈{0,1,...,b+1):=[0,b+1]N0,b5是一個(gè)整數(shù)。f:[V-2,b+v]N-2×R→R是連續(xù)的,f是非零的,2v≤3,△Cvy(t)是標(biāo)準(zhǔn)的Caputo差分。通過(guò)運(yùn)用Schauder不動(dòng)點(diǎn)原理和離散分?jǐn)?shù)階微積分理論證明了解的存在性結(jié)果。最后,給出例子表明了主要結(jié)果的有效性。
[Abstract]:Fractional differential equations and difference equations not only give a reasonable description of many problems in the fields of science, engineering, chemistry, physics and biology, but also are widely used. For example, loudspeaker feedback and analysis, the field of heat conduction and fluid science and so on. Therefore, it is of great significance to study the boundary value problem of fractional order equation. The main research work of this paper is as follows: 1. In this paper, the following nonlinear boundary value problems for fractional differential equations are studied, where f: [0, 鈭,
本文編號(hào):2255963
[Abstract]:Fractional differential equations and difference equations not only give a reasonable description of many problems in the fields of science, engineering, chemistry, physics and biology, but also are widely used. For example, loudspeaker feedback and analysis, the field of heat conduction and fluid science and so on. Therefore, it is of great significance to study the boundary value problem of fractional order equation. The main research work of this paper is as follows: 1. In this paper, the following nonlinear boundary value problems for fractional differential equations are studied, where f: [0, 鈭,
本文編號(hào):2255963
本文鏈接:http://sikaile.net/kejilunwen/yysx/2255963.html
最近更新
教材專著