基于矩陣填充的鏈接預(yù)測(cè)算法研究
[Abstract]:In recent years, with the rapid development of web2.0 technology, the scale of social network is also growing, complex network analysis has become an important research task for researchers. As a branch of complex network analysis, link prediction is widely used in social network, biological information network, food web and many other aspects closely related to human life. Therefore, this paper delves into the problem of link prediction. In the field of data mining, the problem of link prediction plays a very important role in estimating the probability of the existence of links between two disconnected nodes based on the known information of the network. As an important research content in the field of data mining, link prediction has been studied for many years. It is divided into two types: one predicting unknown links and the other predicting future links. The first is to mine links that should exist but are not known, and the second is to predict links that do not exist in existing networks but may occur in the future. This paper focuses on predicting unknown links. The existing link prediction algorithms are divided into four categories: link prediction based on topology; link prediction based on sociological theory; link prediction based on machine learning; and link prediction based on matrix analysis. In this paper, the first point and the fourth point of the in-depth study. Put forward the following points of innovation: 1. In this paper, the link prediction algorithm based on topology structure is improved, and a new similarity measure method, CN-RA., is proposed by combining CN algorithm with RA algorithm. This method not only considers the number of common neighbors in the social network, but also considers the influence of a single common neighbor node on the node similarity. Compared with the CN algorithm and other benchmark algorithms based on topology structure, this method is more effective than the traditional algorithm. Better prediction effect. 2. 2. In this paper, a link prediction framework based on multi-feature fusion is proposed. Inspired by the existing link prediction methods based on matrix filling, we deeply study the augmented Lagrangian multiplier algorithm-ALM. Because the adjacent matrix of social network is of low rank, we can use ALM algorithm to optimize the adjacent matrix and solve the problem of link prediction. Based on this method, a link prediction framework based on multi-feature fusion is proposed, which combines topology features with low-rank features, and is verified by experiments. The experimental results show that compared with the traditional topology based method and the ALM algorithm alone, the prediction effect of this framework is further improved. At the same time, the framework also ensures scalability, and other features (such as node attribute information, sociological information) can be combined to further analyze the dynamic network link prediction problem. In order to verify the feasibility and validity of the above two points, this paper selects three real data sets for experimental verification, one is the USAir dataset net Science dataset and the other is the CN,AA,PA,RA,Jaccard method. ROC curves and AUC values were used to evaluate the experimental results. The experimental results show that the method proposed in this paper can achieve the expected prediction effect, and the link prediction framework with multiple features can significantly improve the prediction effect.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O157.5;TP311.13
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龔振和;基于矩陣表示和合一操作的并行推理方法[J];計(jì)算機(jī)學(xué)報(bào);1988年02期
2 ;1998年第24期擂臺(tái)賽點(diǎn)評(píng)[J];電腦愛好者;1999年06期
3 郝家欍;矩陣、概率與統(tǒng)計(jì)自學(xué)參考[J];煤礦機(jī)械;1985年03期
4 譚瓊;如何形成網(wǎng)絡(luò)流規(guī)劃中的路矩陣[J];系統(tǒng)工程理論與實(shí)踐;1992年04期
5 王以德,賈力普;快速算法及矩陣的新式分解[J];計(jì)算機(jī)應(yīng)用與軟件;1984年03期
6 黃祿炳,黃顯高;矩陣應(yīng)用中值得注意的問題[J];西安郵電學(xué)院學(xué)報(bào);1997年01期
7 李大農(nóng);漢字鄰接頻率的矩陣表示[J];黃岡師專學(xué)報(bào);1997年01期
8 楊秀文,嚴(yán)尚安,張潔,曾順鵬;可達(dá)矩陣的新求法[J];電子科技大學(xué)學(xué)報(bào);2000年06期
9 樊葆華;竇強(qiáng);張鶴穎;;網(wǎng)絡(luò)演算的矩陣解釋[J];計(jì)算機(jī)學(xué)報(bào);2009年12期
10 馮春生;;2維空間填充曲線的塊矩陣迭代法[J];計(jì)算機(jī)工程與應(yīng)用;2011年12期
相關(guān)會(huì)議論文 前2條
1 楊偉;;模糊軟矩陣及其格結(jié)構(gòu)[A];中國(guó)運(yùn)籌學(xué)會(huì)模糊信息與模糊工程分會(huì)第五屆學(xué)術(shù)年會(huì)論文集[C];2010年
2 陳文康;姚陳;;對(duì)Bond變換的若干思考[A];中國(guó)地球物理·2009[C];2009年
相關(guān)重要報(bào)紙文章 前1條
1 金_g;IT自考學(xué)習(xí)資源大搜索(一)[N];中國(guó)電腦教育報(bào);2002年
相關(guān)博士學(xué)位論文 前9條
1 賀楊成;半監(jiān)督低秩矩陣學(xué)習(xí)及其應(yīng)用[D];上海交通大學(xué);2015年
2 陳梅香;廣義二次矩陣的若干研究[D];福建師范大學(xué);2016年
3 郝曉麗;粒度格矩陣空間模型及其應(yīng)用研究[D];太原理工大學(xué);2009年
4 韓曦;基于多維矩陣的移動(dòng)通信信號(hào)檢測(cè)及參數(shù)估計(jì)技術(shù)研究[D];北京郵電大學(xué);2013年
5 張芬;基于低秩矩陣填充的相位檢索方法研究[D];安徽大學(xué);2015年
6 方茂中;關(guān)于矩陣填充和非負(fù)矩陣的研究[D];華東師范大學(xué);2008年
7 陳娜;矩陣恢復(fù)算法及誤差分析[D];華中科技大學(xué);2012年
8 耿娟;低秩矩陣與張量完整化問題的算法研究[D];中國(guó)農(nóng)業(yè)大學(xué);2014年
9 田貴賢;圖譜理論和幾類矩陣的譜與組合特征研究[D];電子科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 崔翔;基于卷積壓縮感知的確定性測(cè)量矩陣研究[D];北京化工大學(xué);2015年
2 吳曼;SDN在IP網(wǎng)絡(luò)的流量調(diào)度應(yīng)用研究[D];電子科技大學(xué);2015年
3 王浩;帶噪聲抑制的流量矩陣估計(jì)方法研究[D];電子科技大學(xué);2015年
4 張婷婷;基于低秩矩陣填充與恢復(fù)的圖像去噪方法研究[D];河北工業(yè)大學(xué);2015年
5 鄧愛淘;基于LDPC碼的壓縮感知測(cè)量矩陣研究[D];湘潭大學(xué);2015年
6 白平;基于拓展全息矩陣的變胞機(jī)構(gòu)創(chuàng)新設(shè)計(jì)研究[D];武漢輕工大學(xué);2015年
7 吳越;Vandermonde矩陣的理論與應(yīng)用研究[D];安徽大學(xué);2016年
8 曹萌;幾類Bezout矩陣的研究[D];安徽大學(xué);2016年
9 唐云;基于Spark的大規(guī)模分布式矩陣運(yùn)算算法研究與實(shí)現(xiàn)[D];南京大學(xué);2016年
10 陳露;關(guān)于矩陣運(yùn)算的公開可驗(yàn)委托計(jì)算的研究與分析[D];蘇州大學(xué);2016年
,本文編號(hào):2229264
本文鏈接:http://sikaile.net/kejilunwen/yysx/2229264.html