幾類界面問題的非擬合有限元方法分析
[Abstract]:Interface problems often occur in material science, solid mechanics and fluid dynamics. For example, heat conduction problem with different conduction coefficient, elastic problem with different material behavior and two-phase flow problem with different viscosity coefficient, etc. At present, the research on numerical methods of interface problems has become one of the hotspots in the field of scientific calculation and engineering. The main purpose of this paper is to construct some new finite element methods to solve interface problems and analyze them numerically under unfitted meshes (i.e. mesh generation and interface position independence). Firstly, based on the ideas of Nitsche method and LDG method, we propose a class of discontinuous Galerkin methods for solving elliptic interface problems. The key of this method is to replace the algebraic average in the classical discontinuous Galerkin method with the weighted average on the interface in the bilinear form of the discrete problem. We obtain the optimal error estimation which is independent of the interface position. Numerical examples verify our theoretical results. Secondly, in order to solve the problem of stiffness matrix ill-condition effectively, we propose a new class of discontinuous Galerkin method. The mesh generation of the non-fitting method is independent of the interface position, which leads to the appearance of very small elements near the interface, which makes the stiffness matrix of the discrete problem seriously ill-conditioned. In order to avoid the direct use of these very small elements, we use the larger elements adjacent to them as their extension elements, which leads us to prove the classical inverse inequalities. Thus, we obtain the optimal error estimation and the condition number of stiffness matrix (O (h-2)., which are independent of the position of the interface. Then, we extend this method to elastic interface problem and Stokes interface problem. For the elastic interface problem, we propose a nonfitting asymmetric discontinuous Galerkin method and prove a new continuation theorem. By using the properties of classical BDM interpolation, the optimal error estimation (Locking-free) is obtained, which is independent of the interface position and the input of Lame constant. For the Stokes interface problem, we propose a discontinuous Galerkin method with penalty speed jump term and stress jump term. The inf-sup stability conditions are proved by using some special techniques, and the optimal error estimates in the sense of energy norm are obtained. Moreover, it is proved that the condition number of stiffness matrix for these two discrete problems is independent of the interface position. Finally, we propose a stable Nitsche finite element method for solving Stokes interface problems. We use the lowest order equal-order finite element method to approximate the velocity and pressure space respectively. Combining the local projection method and the ghost penalty method, we prove the inf-sup stability condition and obtain the optimal error estimates in the sense of energy norm and L 2 norm. It is also proved that the condition number of stiffness matrix is independent of the interface position. Numerical examples verify our theoretical results.
【學(xué)位授予單位】:南京師范大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:O241.82
【相似文獻】
相關(guān)期刊論文 前2條
1 王剛鋒,余壽文;考慮轉(zhuǎn)動梯度的界面問題研究[J];固體力學(xué)學(xué)報;2001年01期
2 ;[J];;年期
相關(guān)會議論文 前3條
1 劉沖;郭邵斌;;復(fù)合材料的界面問題[A];第九屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅰ卷[C];2000年
2 袁新強;;復(fù)合材料的界面問題[A];第十七屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會論文集[C];2008年
3 楊萬泰;;高分子材料表/界面問題及C-H鍵轉(zhuǎn)換新化學(xué)——由化學(xué)到化工技術(shù)[A];2010年全國高分子材料科學(xué)與工程研討會學(xué)術(shù)論文集(上冊)[C];2010年
相關(guān)博士學(xué)位論文 前3條
1 董海霞;求解界面問題的擴展雜交間斷有限元方法研究[D];湖南師范大學(xué);2016年
2 王秋亮;幾類界面問題的非擬合有限元方法分析[D];南京師范大學(xué);2015年
3 劉建康;基于ADI和IIM的界面問題算法研究[D];中南大學(xué);2012年
相關(guān)碩士學(xué)位論文 前7條
1 荊文軍;無單元Galerkin方法及其應(yīng)用[D];蘇州大學(xué);2016年
2 白進緯;IFE-PIC數(shù)值模型界面問題處理方法的研究[D];哈爾濱工業(yè)大學(xué);2016年
3 王峰;各向異性橢圓界面問題的間斷有限元方法[D];山東師范大學(xué);2014年
4 薛芳;三維橢圓型界面問題的有限差分法[D];河北工業(yè)大學(xué);2015年
5 李惠娟;消除奇異源求解三維橢圓型界面問題的有限差分法[D];河北工業(yè)大學(xué);2012年
6 鄒世俊;一類拋物型界面問題的浸入有限元方法[D];山東師范大學(xué);2015年
7 楚豫川;電磁場中有關(guān)界面問題數(shù)值方法的研究[D];哈爾濱工業(yè)大學(xué);2009年
,本文編號:2209211
本文鏈接:http://sikaile.net/kejilunwen/yysx/2209211.html