具奇異或退化性質(zhì)的二階拋物型方程的系數(shù)反演問題
[Abstract]:In this paper, we consider the inversion of coefficients for second-order parabolic equations with singular or degenerate properties. We study the uniqueness and conditional stability of solutions under appropriate additional conditions, the existence, uniqueness, stability, convergence and effective numerical reconstruction methods of regularization problems. In the first chapter, we introduce the coefficients of partial differential equations. In the second chapter, we introduce some function spaces and integral embedding theories, and the well-posed results of second-order parabolic equations. These results play an important role in the proof of the following chapters. In this paper, we study an inverse problem for determining the radiation coefficients of a second order parabolic equation by means of terminal observations. Unlike ordinary terminal control problems, the observed data are given only in a fixed direction, not in the whole region. This leads to the fact that the conjugate theory of the parabolic equation is not applicable here. In addition, the definite solution of the equation is given. In order to overcome the difficulty of coefficient singularity, we introduce some weighted Sobolev spaces. Based on the framework of optimal control theory, the original problem is transformed into an optimization problem. We prove the uniqueness and stability of the minimal element by using the necessary conditions satisfied by the minimal element and some prior estimates of the solution of the positive problem. Finally, we prove the difference between the solution of the optimal control problem and the solution of the original problem. In Chapter 4, we study an inverse problem of simultaneous reconstruction of the initial and source coefficients of Second Order Degenerate Parabolic Equations by using additional conditions. The main characteristics of this problem are as follows: (i) the principal coefficients of the equations degenerate to zero at both ends of the given solution region; (i i) the equations contain two independent unknown functions, because On the one hand, the degeneracy of coefficients leads to the absence of boundary conditions on some boundaries of the solution domain, and on the other hand, the solution of the equation does not have enough regularity. For the ill-posedness of the original problem, we use the optimization method to transform the original problem into an optimal control problem, and establish the existence, necessary conditions and convergence of the regularized solution. The global uniqueness and stability of the regularized solution can not be obtained. In the fifth chapter, the numerical reconstruction of the inverse problem proposed in the previous chapter is discussed. We use Landweber iterative algorithm to solve the inverse problem. The key to the numerical solution of the problem is to find the concrete form of the conjugate operator of the operator of the positive problem. However, because of the coupling of two unknown functions, it is difficult to see the structure of the conjugate operator directly. Finally, the conjugate operator of the positive problem operator is obtained by combining the conjugate operator. Numerical experiments are carried out and a typical example is given. Numerical experiments show that our algorithm is stable and effective, and both unknown functions are well reconstructed.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O175.26
【相似文獻】
相關(guān)期刊論文 前10條
1 魏光祖,袁忠信;一類偽拋物型方程組的特征問題[J];數(shù)學(xué)物理學(xué)報;1985年04期
2 吳仕先;拋物型方程的無限單元法[J];工程數(shù)學(xué)學(xué)報;1988年02期
3 邊保軍;一類拋物型方程的粘性解[J];浙江大學(xué)學(xué)報(理學(xué)版);2000年01期
4 孫仁斌;退縮拋物型方程解的存在性與爆破[J];中南民族大學(xué)學(xué)報(自然科學(xué)版);2002年02期
5 肖宏芳,孫波;固定點控拋物型方程的整體近似能控與有限維精確能控性(英文)[J];常德師范學(xué)院學(xué)報(自然科學(xué)版);2003年03期
6 陳世平;四階拋物型方程一個兩層的高精度隱式格式[J];泉州師范學(xué)院學(xué)報;2003年06期
7 陳世平;四階拋物型方程一族三層的高精度隱式格式[J];泉州師范學(xué)院學(xué)報;2004年04期
8 高常忠,宋惠元;一類時滯非線性偽拋物型方程的有界解[J];應(yīng)用數(shù)學(xué);2004年S1期
9 肖宏芳,孫波;移動點控拋物型方程的精確零能控(英文)[J];湖南文理學(xué)院學(xué)報(自然科學(xué)版);2004年04期
10 楊柳,俞建寧,鄧醉茶;一類拋物型方程反問題的適定算法設(shè)計[J];蘭州交通大學(xué)學(xué)報;2005年03期
相關(guān)會議論文 前2條
1 袁光偉;沈隆鈞;周毓麟;;拋物型方程的并行差分[A];中國工程物理研究院科技年報(2000)[C];2000年
2 袁光偉;盛志強;杭旭登;;具有界面修正項的二階精度無條件穩(wěn)定的并行格式[A];中國工程物理研究院科技年報(2005)[C];2005年
相關(guān)博士學(xué)位論文 前10條
1 楊柳;具奇異或退化性質(zhì)的二階拋物型方程的系數(shù)反演問題[D];蘭州大學(xué);2016年
2 曹楊;一類偽拋物型方程解的漸近行為及其在圖像處理中的應(yīng)用[D];吉林大學(xué);2010年
3 溫瑾;幾類拋物型方程逆問題的數(shù)值方法研究[D];蘭州大學(xué);2011年
4 高夫征;拋物型方程組的數(shù)值方法和分析[D];山東大學(xué);2005年
5 李慧玲;幾類拋物型方程解的定性研究[D];東南大學(xué);2006年
6 李振邦;一類非局部拋物型方程的若干問題[D];吉林大學(xué);2014年
7 田玉娟;Gauss對稱在橢圓型與拋物型方程中的應(yīng)用[D];大連理工大學(xué);2010年
8 孔令花;具有加權(quán)非局部源的非線性拋物型方程[D];大連理工大學(xué);2008年
9 谷偉;倒向問題的隨機數(shù)值算法研究[D];華中科技大學(xué);2008年
10 劉丙辰;關(guān)于多重耦合非線性拋物型方程組的幾個問題[D];大連理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 邱志勇;對流層電磁波傳播的拋物型方程法研究[D];鄭州大學(xué);2015年
2 呂曉雙;幾類拋物型方程解的爆破分析[D];天津大學(xué);2014年
3 楊蕊;具有非局部項的拋物型方程解的定性性質(zhì)[D];中國海洋大學(xué);2015年
4 陳祥瑞;幾類拋物型方程正反問題的數(shù)值計算[D];東華理工大學(xué);2014年
5 楊秀玲;幾類拋物型方程的源型解[D];吉林大學(xué);2009年
6 鄭濤;解拋物型方程的并行算法及其并行實現(xiàn)[D];吉林大學(xué);2009年
7 吳凡;大氣波導(dǎo)中的拋物型方程法研究[D];武漢理工大學(xué);2008年
8 盧宏鵬;二維拋物型方程參數(shù)反演的迭代算法研究[D];西安理工大學(xué);2010年
9 黎楊;拋物型方程的有限差分解法及其在復(fù)雜電磁環(huán)境中的應(yīng)用[D];武漢理工大學(xué);2010年
10 張仁寧;兩類時滯拋物型方程的三次樣條解法[D];哈爾濱工業(yè)大學(xué);2010年
,本文編號:2200173
本文鏈接:http://sikaile.net/kejilunwen/yysx/2200173.html