某些非循環(huán)2-群模表示空間的強(qiáng)平坦性和平坦性(英文)
發(fā)布時(shí)間:2018-08-11 12:50
【摘要】:研究特征為2域上,某些非循環(huán)2-群模表示空間的強(qiáng)平坦性和平坦性,確定對(duì)應(yīng)模不變式環(huán)的深度。在階數(shù)不為4的非循環(huán)交換2-群的不可分解表示中,有兩種表示空間的類型是平坦的。對(duì)于非交換2群而言,如果群G是階數(shù)為2~(n+2)的二面體群或廣義四元數(shù)群,則其在維數(shù)為1+2~n的忠實(shí)表示都是平坦的,但都不是強(qiáng)平坦的。
[Abstract]:In this paper, we study the strong flatness and flatness of some aperiodic 2-group modules representing spaces over 2 fields, and determine the depth of corresponding modular invariant rings. In the indecomposable representations of non-cyclic commutative 2-groups of order 4, two types of representation spaces are flat. For a noncommutative 2 group, if G is a dihedral group of order 2 ~ (n 2) or a generalized quaternion group, then the faithful representation of the group G with dimension 1 2 n is flat but not strongly flat.
【作者單位】: 大連理工大學(xué)數(shù)學(xué)科學(xué)學(xué)院;
【基金】:Supported by the National Natural Science Foundation of China(11371343)
【分類號(hào)】:O152
本文編號(hào):2177043
[Abstract]:In this paper, we study the strong flatness and flatness of some aperiodic 2-group modules representing spaces over 2 fields, and determine the depth of corresponding modular invariant rings. In the indecomposable representations of non-cyclic commutative 2-groups of order 4, two types of representation spaces are flat. For a noncommutative 2 group, if G is a dihedral group of order 2 ~ (n 2) or a generalized quaternion group, then the faithful representation of the group G with dimension 1 2 n is flat but not strongly flat.
【作者單位】: 大連理工大學(xué)數(shù)學(xué)科學(xué)學(xué)院;
【基金】:Supported by the National Natural Science Foundation of China(11371343)
【分類號(hào)】:O152
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 ;中科院李福安教授、浙江大學(xué)李慧陵教授來(lái)我校講學(xué)[J];山西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期
,本文編號(hào):2177043
本文鏈接:http://sikaile.net/kejilunwen/yysx/2177043.html
最近更新
教材專著