一類發(fā)展方程Cauchy問題解曲線演化
發(fā)布時(shí)間:2018-08-02 18:44
【摘要】:偏微分方程解曲線的演化一直是偏微分方程研究的重要領(lǐng)域和方向。本文首先對(duì)一類線性和半線性偏微分方程Cauchy問題解曲線的演化進(jìn)行研究,得到在給定的光滑條件下,方程初始解曲線上的幾何性質(zhì)可以繼承到任意時(shí)刻的解曲線上。其次研究KdV方程Cauchy問題解曲線的一些性質(zhì)的演化,得到了關(guān)于單調(diào)性,凹凸性和孤立極值點(diǎn)的演化結(jié)果。即在給定的光滑條件下,KdV方程初始解曲線上的孤立極值點(diǎn),單調(diào)性和凹凸性可以繼承到任意t(29)0時(shí)刻的解曲線上。全文共有五個(gè)章節(jié):第一章節(jié)介紹了KdV方程的研究背景、現(xiàn)狀及主要結(jié)果,也介紹了一些對(duì)于方程演化研究的現(xiàn)狀和主要結(jié)果。第二章節(jié)介紹了相關(guān)基本概念和定理。第三章節(jié)研究了一類線性和半線性偏微分方程柯西問題解曲線的演化。第四章節(jié)研究了KdV方程柯西問題解曲線的演化。第五章節(jié)對(duì)全文進(jìn)行總結(jié)并對(duì)未來研究方向作出展望。
[Abstract]:The evolution of solution curves of partial differential equations has been an important field and direction in the research of partial differential equations. In this paper, we first study the evolution of the solution curves of a class of linear and semilinear partial differential equations for Cauchy problems. Under given smooth conditions, the geometric properties of the initial solution curves of the equations can be inherited to the solution curves at any time. Secondly, the evolution of some properties of the solution curve of the Cauchy problem for KdV equation is studied, and the evolution results of monotonicity, concave convexity and solitary extremum are obtained. The monotonicity and concave convexity can be inherited to the solution curve at any t (29) 0 moment under the given smooth conditions on the isolated extremum of the initial solution curve of KDV equation. There are five chapters in this paper: the first chapter introduces the research background, current situation and main results of KdV equation, as well as the present situation and main results of the evolution of the equation. The second chapter introduces the basic concepts and theorems. In the third chapter, we study the evolution of the solution curve of Cauchy problem for a class of linear and semilinear partial differential equations. In the fourth chapter, the evolution of the solution curve of Cauchy problem for KdV equation is studied. The fifth chapter summarizes the full text and prospects the future research direction.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175.2
本文編號(hào):2160359
[Abstract]:The evolution of solution curves of partial differential equations has been an important field and direction in the research of partial differential equations. In this paper, we first study the evolution of the solution curves of a class of linear and semilinear partial differential equations for Cauchy problems. Under given smooth conditions, the geometric properties of the initial solution curves of the equations can be inherited to the solution curves at any time. Secondly, the evolution of some properties of the solution curve of the Cauchy problem for KdV equation is studied, and the evolution results of monotonicity, concave convexity and solitary extremum are obtained. The monotonicity and concave convexity can be inherited to the solution curve at any t (29) 0 moment under the given smooth conditions on the isolated extremum of the initial solution curve of KDV equation. There are five chapters in this paper: the first chapter introduces the research background, current situation and main results of KdV equation, as well as the present situation and main results of the evolution of the equation. The second chapter introduces the basic concepts and theorems. In the third chapter, we study the evolution of the solution curve of Cauchy problem for a class of linear and semilinear partial differential equations. In the fourth chapter, the evolution of the solution curve of Cauchy problem for KdV equation is studied. The fifth chapter summarizes the full text and prospects the future research direction.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 于炳亮;許巖;王中秋;;基于驅(qū)使項(xiàng)懲罰的曲線演化模型改進(jìn)[J];山東科學(xué);2010年05期
2 戴龐達(dá);張玉鈞;魯昌華;周毅;王京麗;肖雪;;基于曲線演化的雙光源夜間能見度反演算法研究[J];光譜學(xué)與光譜分析;2014年09期
相關(guān)博士學(xué)位論文 前1條
1 秦安;醫(yī)學(xué)心臟序列圖像自動(dòng)分析研究[D];第一軍醫(yī)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前5條
1 趙洋;基于曲線演化的進(jìn)給率定制的研究[D];大連理工大學(xué);2015年
2 許羚;一類發(fā)展方程Cauchy問題解曲線演化[D];江蘇大學(xué);2017年
3 湯永川;曲線演化模型及其在視網(wǎng)膜圖像分割中的應(yīng)用研究[D];湖南大學(xué);2012年
4 周娟;基于形狀學(xué)習(xí)和曲線演化的醫(yī)學(xué)圖像分割研究[D];上海交通大學(xué);2009年
5 夏青;基于圖像處理的干香菇分級(jí)方法研究[D];華中農(nóng)業(yè)大學(xué);2014年
,本文編號(hào):2160359
本文鏈接:http://sikaile.net/kejilunwen/yysx/2160359.html
最近更新
教材專著