系統(tǒng)半變分不等式問題的適定性研究
[Abstract]:Semi-variational inequalities represent a class of nonlinear inclusion problems related to Clake subdifferential operators. In the framework of nonlinear analysis and non-smooth analysis theory, semi-variational inequalities have become a powerful mathematical model. It is widely used in mechanical problems such as unilateral contact, non-convex semi-permeation, multi-layer structure delamination and other engineering problems, such as stone engineering, nonlinear friction contact and so on. In view of the extensive application value of semi-variational inequalities in various practical problems, in the 1990s, scholars and experts in various fields at home and abroad paid close attention to the problems of semi-variational inequalities. A large number of papers and monographs related to the theory of semi-variational inequalities have been obtained. The concept of fitness plays an important role in the study of optimization problems, variational inequalities, equilibrium problems and their related problems. It has an important influence on the solvability, uniqueness, stability and algorithm research of the related problems. The semi-variational inequalities of systems and divisible semi-variational inequalities of systems are two important generalizations of variational inequalities and semi-variational inequalities. They have important application value in engineering, mechanics, economy and so on. In this paper, by introducing the concept of fitness for the corresponding inclusion problem, we study the fitness of the semi-variational inequality problem and the divisible semi-variational inequality problem of the system. At the same time, the metric properties of fitness and some equivalent results related to fitness are given. The main work of this paper is as follows: firstly, under the framework of nonlinear analysis theory, monotone operator theory and non-compactness theory, the concept of fitness for semi-variational inequality problems of systems is proposed by defining approximate sequences. Under certain assumptions, for a given set? With? And the relationship between the two sets is studied. Based on the set? With? In the second chapter, we describe the metric properties of the fitness of the semi-variational inequality problems. Since the semi-variational inequality problem of the system can be regarded as a class of inclusion problems involving Clake subdifferential operators, in Chapter 3, we define the fitness of the inclusion problem of the system. It is proved that the adequacy of the inclusion problem and the corresponding semi-variational inequality problem is equivalent to each other. Finally, in chapter 4, we study the divisible semi-variational inequality problem and its fitness. Furthermore, under different monotonicity assumptions, we obtain the equivalence results between the existence and uniqueness of strong and weak proper definiteness and solution for divisible semi-variational inequality problems.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:O178
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張立平,韓繼業(yè),徐大川;變分不等式問題的解的存在性[J];中國(guó)科學(xué)(A輯);2000年10期
2 邢志棟,曾云輝,劉三陽(yáng);變分不等式問題的新發(fā)展[J];西安電子科技大學(xué)學(xué)報(bào);2000年05期
3 張立平,賴炎連;關(guān)于單調(diào)的變分不等式問題的收斂性方法[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);2000年02期
4 董云達(dá);求解變分不等式問題的一個(gè)遞推算法的一個(gè)注(英文)[J];數(shù)學(xué)雜志;2003年03期
5 屈彪,鄭召文,張善美;利用廣義D-間隙函數(shù)求解變分不等式問題的新進(jìn)展[J];曲阜師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年04期
6 孫洪春,孫敏,劉品;一種求解廣義變分不等式問題的新方法[J];曲阜師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年04期
7 李飛;梁惜明;;連續(xù)化方法求解變分不等式問題[J];系統(tǒng)科學(xué)與數(shù)學(xué);2005年05期
8 余文波;;一種求解變分不等式問題的光滑路徑方法[J];渤海大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年04期
9 羅杰;陳喬;;不變松弛μ單調(diào)及其在似變分不等式問題中的應(yīng)用[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版)理工卷;2008年04期
10 譚露琳;;空間中變分不等式問題解的存在性與例外簇[J];華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期
相關(guān)會(huì)議論文 前2條
1 袁駟;劉澤洲;邢沁妍;;一維變分不等式問題的自適應(yīng)有限元分析新探[A];第23屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅰ冊(cè))[C];2014年
2 周巖;濮定國(guó);;Large QP-free方法解變分不等式問題[A];中國(guó)運(yùn)籌學(xué)會(huì)第七屆學(xué)術(shù)交流會(huì)論文集(上卷)[C];2004年
相關(guān)博士學(xué)位論文 前6條
1 孫菊賀;錐約束變分不等式問題的數(shù)值方法的研究[D];大連理工大學(xué);2008年
2 彭自嘉;雙重非線性發(fā)展型方程及H-半變分不等式問題研究[D];中南大學(xué);2012年
3 羅美菊;求解隨機(jī)變分不等式問題的(擬)蒙特卡羅方法及其收斂性分析[D];大連理工大學(xué);2010年
4 范曉娜;解變分不等式問題的同倫方法[D];大連理工大學(xué);2008年
5 趙娜;解幾類變分不等式總是的光滑算法[D];天津大學(xué);2010年
6 王云娟;變分不等式問題的仿射內(nèi)點(diǎn)信賴域方法和應(yīng)用[D];上海師范大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 吳吉芳;一些變分不等式問題解的存在性與迭代算法[D];四川師范大學(xué);2015年
2 張倩男;變分不等式問題投影收縮算法線搜索策略的改進(jìn)[D];內(nèi)蒙古工業(yè)大學(xué);2015年
3 田琦;基于投影收縮的SA方法求解隨機(jī)變分不等式問題[D];大連理工大學(xué);2015年
4 劉相靜;變分不等式問題的數(shù)值解法及其相關(guān)理論[D];青島大學(xué);2015年
5 范秋云;關(guān)于幾類優(yōu)化問題的討論[D];蘇州大學(xué);2016年
6 王玉梅;系統(tǒng)半變分不等式問題的適定性研究[D];電子科技大學(xué);2016年
7 彭自嘉;變分不等式問題的組合松弛算法[D];中南大學(xué);2008年
8 岳麗;廣義變分不等式問題的若干算法研究[D];曲阜師范大學(xué);2005年
9 陶佳;廣義向量隱擬似變分不等式問題[D];渤海大學(xué);2012年
10 胡文彪;求解單調(diào)變分不等式問題的一類效益函數(shù)方法[D];大連理工大學(xué);2009年
,本文編號(hào):2159968
本文鏈接:http://sikaile.net/kejilunwen/yysx/2159968.html