分裂的δ Jordan-Lie代數(shù)的結(jié)構(gòu)
發(fā)布時(shí)間:2018-07-23 19:46
【摘要】:研究帶有對(duì)稱根系的任意分裂的δJordan-Lie代數(shù)的結(jié)構(gòu),定義分裂的δJordan-Lie代數(shù),給出此代數(shù)的根連接;利用根連接這種工具,刻畫代數(shù)L,具有形式L=U+∑[j]∈Λ/~I[j],其中U是極大Abelian子代數(shù)H的一個(gè)子空間,I[j]是L的一個(gè)理想,并且滿足如果[j]≠[k],有[I[j],I[k]]=0。
[Abstract]:In this paper, we study the structure of arbitrarily split 未 Jordan-Lie algebras with symmetric roots, define the splitting 未 Jordan-Lie algebras, give the root connections of this algebra, and use the tool of root connection, Characterizing the algebra L, we have the form LJ U 鈭,
本文編號(hào):2140456
[Abstract]:In this paper, we study the structure of arbitrarily split 未 Jordan-Lie algebras with symmetric roots, define the splitting 未 Jordan-Lie algebras, give the root connections of this algebra, and use the tool of root connection, Characterizing the algebra L, we have the form LJ U 鈭,
本文編號(hào):2140456
本文鏈接:http://sikaile.net/kejilunwen/yysx/2140456.html
最近更新
教材專著