具有非三角形式的代數(shù)上的上三角矩陣代數(shù)的自同構(gòu)
發(fā)布時間:2018-07-18 13:23
【摘要】:代數(shù)和環(huán)上的映射一直是基礎(chǔ)數(shù)學(xué)的一個非常重要的研究部分。矩陣代數(shù)(環(huán))及其子代數(shù)(環(huán))的自同構(gòu)是矩陣?yán)碚撗芯款I(lǐng)域中的一個非;钴S和成果豐碩的課題。早在1927年,Skolem就獲得了著名的Skolem-Noether定理:域上的n×n矩陣代數(shù)上的自同構(gòu)為內(nèi)自同構(gòu)。隨后人們在這個領(lǐng)域做了大量的研究。在這些研究中,我們看到所涉及的對象主要是域或環(huán)上的矩陣代數(shù)、三角矩陣代數(shù)的自同構(gòu)。設(shè)R為具有單位元的交換環(huán),A是R上的有單位元的代數(shù)。A稱為非三角形式,如果對每個冪等元e ∈A,有(1-e)Ae = {0}(?)eA(1-e)= {0}。易見,有單位元的半素代數(shù)、有單位元的交換代數(shù)、冪等元屬于中心的代數(shù)均為非三角形式的代數(shù)。本文主要討論具有非三角形式的代數(shù)上的上三角矩陣代數(shù)的自同構(gòu)的形式。本文共分三章:第一章主要介紹了上三角矩陣代數(shù)及相關(guān)代數(shù)上的自同構(gòu)的研究現(xiàn)狀。第二章主要介紹了本文中要用到的一些基本概念和具有非三角形式代數(shù)及內(nèi)自同。第三章是本文的主要部分。主要刻畫了具有非三角形式的代數(shù)上的上三角矩陣代數(shù)的自同構(gòu)的形式。我們的主要結(jié)果是:設(shè)A是具有非三角形式的代數(shù),T民(A)是A上的上三角矩陣代數(shù)時,Tn(A)上的每個自同構(gòu)σ都有如下分解:σ =σασ,其中σα是由α ∈Tn(A)誘導(dǎo)的Tn(A)的一個內(nèi)自同構(gòu),σ是由A的自同構(gòu)誘導(dǎo)的Tn(A)的一個自同構(gòu)。本文所獲得的結(jié)果推廣了 J(?)ndrup[10]的關(guān)于上三角矩陣代數(shù)上自同構(gòu)的一個結(jié)果。
[Abstract]:The mapping on algebras and rings has always been a very important part of basic mathematics. The automorphism of matrix algebra (ring) and its subalgebra (ring) is a very active and fruitful topic in the field of matrix theory. As early as 1927, Skolem obtained the famous Skolem-Noether theorem: the automorphism of n 脳 n matrix algebra on the field is inner automorphism. Then people did a lot of research in this field. In these studies, we see that the objects involved are matrix algebras over fields or rings, automorphisms of triangular matrix algebras. Let R be a commutative ring A with unit elements. Let R be an algebra with unit elements over R. A is called a non-triangular form, if for every idempotent e 鈭,
本文編號:2132032
[Abstract]:The mapping on algebras and rings has always been a very important part of basic mathematics. The automorphism of matrix algebra (ring) and its subalgebra (ring) is a very active and fruitful topic in the field of matrix theory. As early as 1927, Skolem obtained the famous Skolem-Noether theorem: the automorphism of n 脳 n matrix algebra on the field is inner automorphism. Then people did a lot of research in this field. In these studies, we see that the objects involved are matrix algebras over fields or rings, automorphisms of triangular matrix algebras. Let R be a commutative ring A with unit elements. Let R be an algebra with unit elements over R. A is called a non-triangular form, if for every idempotent e 鈭,
本文編號:2132032
本文鏈接:http://sikaile.net/kejilunwen/yysx/2132032.html
最近更新
教材專著