天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

多目標(biāo)優(yōu)化算法及其在航電健康管理系統(tǒng)中應(yīng)用

發(fā)布時(shí)間:2018-06-22 19:39

  本文選題:多目標(biāo)優(yōu)化問(wèn)題 + 測(cè)試選擇問(wèn)題; 參考:《電子科技大學(xué)》2017年碩士論文


【摘要】:由于新一代飛機(jī)對(duì)先進(jìn)航空電子系統(tǒng)的需求越來(lái)越高,航空電子技術(shù)在近年得到了迅速發(fā)展。在航空電子系統(tǒng)功能日益完善的同時(shí),其可靠性也得到越來(lái)越多研發(fā)人員的重視。航電健康管理系統(tǒng)作為航空電子系統(tǒng)可靠性的保障,逐漸成為研究熱點(diǎn),尤其是作為航電健康管理系統(tǒng)基礎(chǔ)的測(cè)試選擇問(wèn)題。經(jīng)典的測(cè)試選擇方法是單目標(biāo)方法,而實(shí)際上測(cè)試選擇問(wèn)題是典型的多目標(biāo)問(wèn)題。本文將多目標(biāo)優(yōu)化方法應(yīng)用到航電健康管理設(shè)計(jì)的測(cè)試選擇問(wèn)題中,完成了以下研究工作:(1)完成了多目標(biāo)優(yōu)化方法研究。多目標(biāo)優(yōu)化是當(dāng)前優(yōu)化和決策領(lǐng)域的熱點(diǎn)方向,它適用于存在多個(gè)需要同時(shí)考慮的優(yōu)化目標(biāo)并且這些優(yōu)化目標(biāo)往往互相沖突的情況。解決這類問(wèn)題需要特殊的建模方式、優(yōu)化理論和求解算法。因此,本文在具體研究了多目標(biāo)優(yōu)化問(wèn)題的數(shù)學(xué)模型和Pareto最優(yōu)理論的基礎(chǔ)上,詳細(xì)分析了MOGA、NSGA2、SPEA2、PAES這四種在多目標(biāo)優(yōu)化領(lǐng)域具有代表性,評(píng)價(jià)較高的算法,同時(shí)研究了多目標(biāo)優(yōu)化算法的性能評(píng)價(jià)方法。(2)詳細(xì)研究了測(cè)試選擇問(wèn)題,分析了其中多個(gè)優(yōu)化目標(biāo)的物理意義和計(jì)算方式。介紹了基于故障字典技術(shù)的測(cè)試選擇方法,研究了從初始故障字典構(gòu)建,模糊組劃分到整數(shù)編碼轉(zhuǎn)換的整個(gè)建模流程,還研究了貪婪選擇法和智能優(yōu)化法兩類測(cè)試選擇方法并分析了其優(yōu)缺點(diǎn)。同時(shí)提出了一種基于測(cè)試選擇優(yōu)化的故障診斷技術(shù)。(3)提出了基于混沌多目標(biāo)粒子群優(yōu)化算法的測(cè)試選擇方法。在離散粒子群算法的基礎(chǔ)上進(jìn)行了多目標(biāo)優(yōu)化的改進(jìn),特別加入混沌變異機(jī)制提高算法的全局搜索能力。實(shí)驗(yàn)證明混沌機(jī)制能避免算法出現(xiàn)早熟收斂現(xiàn)象,隨后通過(guò)與其它算法的對(duì)比實(shí)驗(yàn),驗(yàn)證了本文所提出的算法的有效性和卓越性。(4)完成了測(cè)試選擇及故障診斷軟件的設(shè)計(jì)與驗(yàn)證。結(jié)合本文提出的針對(duì)測(cè)試選擇問(wèn)題的多目標(biāo)優(yōu)化算法以及故障診斷技術(shù),設(shè)計(jì)了一款由測(cè)試選擇模塊、實(shí)時(shí)監(jiān)測(cè)模塊和故障診斷模塊組成的軟件,并且通過(guò)該軟件,驗(yàn)證了測(cè)試選擇以及多目標(biāo)優(yōu)化方法應(yīng)用的有效性。本文是多目標(biāo)優(yōu)化方法在航電健康管理系統(tǒng)中應(yīng)用的嘗試,為后續(xù)工作提供基礎(chǔ)和新的研究方向。
[Abstract]:Avionics technology has been developed rapidly in recent years due to the increasing demand for advanced avionics systems for new generation aircraft. As the function of avionics system becomes more and more perfect, more and more researchers pay attention to its reliability. Avionics health management system, as the guarantee of avionics system reliability, has gradually become a research hotspot, especially the test selection as the basis of avionics health management system. The classical test selection method is a single objective method, but in fact the test selection problem is a typical multi-objective problem. In this paper, the multi-objective optimization method is applied to the test selection problem of avionics health management design. The following research work is accomplished: (1) the multi-objective optimization method is studied. Multi-objective optimization is a hot topic in the field of optimization and decision-making. It is suitable for the situation where there are many optimization objectives that need to be considered simultaneously and these optimization objectives often conflict with each other. Solving this kind of problems requires special modeling, optimization theory and solving algorithm. Therefore, on the basis of studying the mathematical model and Pareto optimal theory of multi-objective optimization problem in detail, this paper analyzes in detail four algorithms which are representative and highly evaluated in the field of multi-objective optimization. At the same time, the performance evaluation method of multi-objective optimization algorithm is studied. (2) the test selection problem is studied in detail, and the physical meaning and calculation method of multiple optimization objectives are analyzed. This paper introduces the test selection method based on fault dictionary technology, and studies the whole modeling process from initial fault dictionary construction, fuzzy group partition to integer coding conversion. Two kinds of test selection methods, greedy selection method and intelligent optimization method, are also studied and their advantages and disadvantages are analyzed. At the same time, a fault diagnosis technique based on test selection optimization is proposed. (3) A test selection method based on chaotic multi-objective particle swarm optimization algorithm is proposed. Based on the discrete Particle Swarm Optimization (DPSO), the multi-objective optimization is improved, especially the chaos mutation mechanism is added to improve the global search ability of the algorithm. The experimental results show that the chaotic mechanism can avoid premature convergence of the algorithm, and then compared with other algorithms, The validity and excellence of the proposed algorithm are verified. (4) the design and verification of test selection and fault diagnosis software are completed. Combined with the multi-objective optimization algorithm and fault diagnosis technology proposed in this paper, a software composed of test selection module, real-time monitoring module and fault diagnosis module is designed. The validity of test selection and application of multi-objective optimization method is verified. This paper is an attempt to apply multi-objective optimization method in avionics health management system, which provides the basis and new research direction for the follow-up work.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:V243;O221.6

【參考文獻(xiàn)】

相關(guān)期刊論文 前5條

1 李裕;郭子彥;朱會(huì)柱;楊俊鵬;龍兵;;基于混沌多目標(biāo)粒子群算法的測(cè)點(diǎn)優(yōu)選方法[J];電子測(cè)量與儀器學(xué)報(bào);2016年07期

2 盧海濤;王自力;;綜合航空電子系統(tǒng)故障診斷與健康管理技術(shù)發(fā)展[J];電光與控制;2015年08期

3 陳國(guó)棟;韓旭;;基于代理模型的多目標(biāo)優(yōu)化方法及其在車身設(shè)計(jì)中的應(yīng)用[J];機(jī)械工程學(xué)報(bào);2014年09期

4 楊軍祥;田澤;李成文;楊濤;王純委;劉宇;;新一代航空電子故障預(yù)測(cè)與健康管理系統(tǒng)綜述[J];計(jì)算機(jī)測(cè)量與控制;2014年04期

5 吳明輝;許愛(ài)強(qiáng);戴豪民;;PHM技術(shù)在綜合航空電子系統(tǒng)中的應(yīng)用[J];兵工自動(dòng)化;2013年04期

相關(guān)博士學(xué)位論文 前2條

1 楊成林;模擬故障字典技術(shù)測(cè)點(diǎn)選擇問(wèn)題研究[D];電子科技大學(xué);2011年

2 范培蕾;多目標(biāo)優(yōu)化方法及其在高超聲速試飛器系統(tǒng)中的應(yīng)用研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年

相關(guān)碩士學(xué)位論文 前3條

1 徐永;多目標(biāo)優(yōu)化模糊控制及在車輛自動(dòng)駕駛中的應(yīng)用[D];西南交通大學(xué);2008年

2 崔連瓊;多目標(biāo)遺傳算法及其在船舶型線優(yōu)化中的應(yīng)用[D];武漢理工大學(xué);2008年

3 王魯;基于遺傳算法的多目標(biāo)優(yōu)化算法研究[D];武漢理工大學(xué);2006年

,

本文編號(hào):2054011

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2054011.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dca6f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日韩欧美好看的剧情片免费| 欧美中文字幕一区在线| 亚洲国产香蕉视频在线观看| 国产麻豆成人精品区在线观看| 精品综合欧美一区二区三区| 欧美成人黄色一区二区三区| 亚洲一区二区三区三州| 黑鬼糟蹋少妇资源在线观看| 大香蕉精品视频一区二区| 国产成人午夜av一区二区| 欧美一区二区三区喷汁尤物| 99久久精品国产麻豆| 1024你懂的在线视频| 太香蕉久久国产精品视频| 亚洲欧美日韩熟女第一页| 两性色午夜天堂免费视频| 精品伊人久久大香线蕉综合| 国产欧美性成人精品午夜| 成人国产激情福利久久| 熟女中文字幕一区二区三区| 91偷拍视频久久精品| 九九热九九热九九热九九热| 亚洲精品有码中文字幕在线观看| 国产成人精品一区二三区在线观看| 中文久久乱码一区二区| 国产精品一区二区视频大全| 亚洲成人精品免费在线观看| 亚洲欧美日韩另类第一页| 国产传媒免费观看视频| 日本加勒比在线观看不卡| 粉嫩国产一区二区三区在线| 国产精品欧美一区二区三区| 草草夜色精品国产噜噜竹菊| 日韩人妻一区中文字幕| 99福利一区二区视频| 久七久精品视频黄色的| 欧美黑人巨大一区二区三区| 粉嫩内射av一区二区| 在线精品首页中文字幕亚洲| 日韩av亚洲一区二区三区| 很黄很污在线免费观看|