變指數(shù)Herz-Hardy空間上的多線性算子
發(fā)布時(shí)間:2018-06-16 21:21
本文選題:多線性算子 + Riesz位勢; 參考:《青島大學(xué)》2017年碩士論文
【摘要】:本文首先介紹了變指數(shù)Lebesgue空間的基本概念、性質(zhì)和某些奇異積分算子在變指數(shù)Lebesgue空間的有界性.然后,利用變指數(shù)Lebesgue空間的概念和Calderon-Zygmund多線性奇異積分算子、多線性分?jǐn)?shù)次積分的性質(zhì),基于變指數(shù)Herz-Hardy空間上的原子分解定理,利用Holder不等式和Jensen不等式,證明了從變指數(shù)乘積Herz-Hardy空間到變指數(shù)Herz空間上的Calderon-Zygmund多線性奇異積分算子和多線性Riesz位勢的有界性.
[Abstract]:In this paper, we first introduce the basic concepts and properties of variable exponential Lebesgue spaces and the boundedness of some singular integral operators in variable exponential Lebesgue spaces. Then, by using the concept of variable exponent Lebesgue space and the properties of Calderon-Zygmund multilinear singular integral operator and multilinear fractional integral, based on the atomic decomposition theorem on the variable exponent Herz-Hardy space, Holder inequality and Jensen inequality are used. The boundedness of Calderon-Zygmund multilinear singular integral operator and multilinear Riesz potential from the variable exponential product Herz-Hardy space to the variable exponential Herz space is proved.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O177
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 ;Multilinear singular integrals and commutators in variable exponent Lebesgue spaces[J];Applied Mathematics:A Journal of Chinese Universities(Series B);2010年01期
2 王瑋;徐景實(shí);;變指數(shù)Lebesgue積空間上的多重線性奇異積分與Lipschitz函數(shù)生成的交換子(英文)[J];數(shù)學(xué)進(jìn)展;2009年06期
3 ;Boundedness for multilinear fractional integral operators on Herz type spaces[J];Applied Mathematics:A Journal of Chinese Universities(Series B);2008年04期
,本文編號:2028151
本文鏈接:http://sikaile.net/kejilunwen/yysx/2028151.html
最近更新
教材專著