基于logistic回歸的睡眠預(yù)測模型
發(fā)布時(shí)間:2018-06-11 21:16
本文選題:邏輯回歸 + 睡眠預(yù)測模型 ; 參考:《云南大學(xué)》2015年碩士論文
【摘要】:某第三方支付平臺存在大量睡眠用戶。因?yàn)椴划a(chǎn)生任何效益所以可以認(rèn)為睡眠用戶就是客戶流失。這對于運(yùn)營部門而言是較大的浪費(fèi)。因此,從維系公司運(yùn)營角度考慮,準(zhǔn)確找出哪些用戶進(jìn)入睡眠,那么在市場部挽留措施下則能有效提升用戶的價(jià)值。本文以某支付平臺用戶作為研究對象。從用戶行為分析的角度和現(xiàn)有數(shù)據(jù)基礎(chǔ)上確定建模變量。在單變量分析上,運(yùn)用elogit散點(diǎn)圖分析對連續(xù)變量進(jìn)行變量變換及判斷變量對模型的影響效應(yīng),運(yùn)用頻率分析對類別變量進(jìn)行分析。利用二元logistic模型建立移動(dòng)支付平臺用戶睡眠預(yù)測模型,結(jié)合實(shí)際數(shù)據(jù)進(jìn)行實(shí)證研究。結(jié)果:最后一次交易后余額,最近三月消費(fèi)次數(shù),最近三個(gè)月消費(fèi)筆數(shù)占比,最近三個(gè)月交易金額占個(gè)月總交易額百分比,最近三個(gè)月轉(zhuǎn)賬筆數(shù)占比,實(shí)名等級,最近三月轉(zhuǎn)賬金額占比與最近4-6個(gè)月轉(zhuǎn)賬金額占比變化比例對用戶睡眠具有統(tǒng)計(jì)學(xué)意義。其中最后一次交易后余額,最近三月消費(fèi)次數(shù),最近三個(gè)月消費(fèi)筆數(shù)占比,最近三個(gè)月交易金額占六個(gè)月總交易額百分比影響最為顯著。
[Abstract]:A large number of sleep users exist on a third-party payment platform. You can think of sleep users as customer churns because you don't have any benefits. This is a big waste for the operations department. Therefore, from the point of view of maintaining the operation of the company, finding out exactly which users are sleeping can effectively enhance the value of the users under the retention measures of the marketing department. In this paper, the user of a payment platform as the research object. The modeling variables are determined from the point of view of user behavior analysis and existing data. In univariate analysis, elogit scatter plot analysis is used to analyze the variable transformation of continuous variables and the effect of judging variables on the model, and frequency analysis is used to analyze the class variables. The sleep prediction model of mobile payment platform is established by using the binary logistic model, and the empirical research is carried out based on the actual data. Results: the balance after the last transaction, the number of times consumed in the last three months, the number of pens consumed in the last three months, the transaction amount in the last three months as a percentage of the total monthly transaction volume, the number of transfer pens in the last three months as a percentage of the real name grade, The proportion of transfer amount in recent March and in the last 4-6 months is statistically significant to the sleep of users. The balance after the last transaction, the number of times spent in the last three months, the number of pens consumed in the last three months, and the percentage of the transaction amount in the last three months to the total trading volume in six months were the most significant.
【學(xué)位授予單位】:云南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:O212.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 王波;;高價(jià)值客戶流失預(yù)警及挽留策略分析[J];中國新通信;2015年01期
2 黃瑤;黃洪偉;林傳艷;;關(guān)于手機(jī)銀行在上海市應(yīng)用現(xiàn)狀的調(diào)查研究[J];商業(yè)經(jīng)濟(jì);2014年16期
3 曹國;許娟;沈利香;;基于ERFM和二元logistic的商業(yè)銀行零售客戶流失模型研究[J];財(cái)會(huì)通訊;2012年33期
4 于小兵;曹杰;鞏在武;;客戶流失問題研究綜述[J];計(jì)算機(jī)集成制造系統(tǒng);2012年10期
5 徐燕妮;劉欣穎;范方;;電信客戶流失預(yù)警模型的構(gòu)建[J];中國科技信息;2012年01期
6 王維佳;繆柏其;魏國省;;數(shù)據(jù)挖掘——電信客戶流失分析預(yù)測[J];數(shù)理統(tǒng)計(jì)與管理;2006年04期
,本文編號:2006721
本文鏈接:http://sikaile.net/kejilunwen/yysx/2006721.html
最近更新
教材專著