區(qū)間值最小二乘核仁解及在供應(yīng)鏈合作利益分配中的應(yīng)用
發(fā)布時間:2018-06-04 21:33
本文選題:模糊對策 + 合作對策。 參考:《中國管理科學(xué)》2017年12期
【摘要】:針對合作對策中聯(lián)盟值(或特征函數(shù))常表示為區(qū)間值而非實數(shù)的現(xiàn)象,提出兩種新的二次規(guī)劃求解方法,該方法能快速、有效的獲得n人區(qū)間值合作對策的區(qū)間值最小二乘預(yù)核仁解和核仁解。首先,利用反映聯(lián)盟不滿意度的平方超量e(S,喁)=(υL(S)-xL(S))2+(υR(S)-xR(S))2,構(gòu)建求解區(qū)間值最小二乘預(yù)核仁解的二次規(guī)劃模型,據(jù)此確定每個局中人的區(qū)間值分配喁_i~(E~*)=[x_(Li)~(E~*),x_(Ri)~(E~*)](i∈N)。其中,x_(Li)~(E~*)=υL(N)/n+1/(n2~(n-2))(naLi(υ)-∑j∈NaLj(υ)),x_(Ri)~(E~*)=υR(N)/n+1/(n2~(n-2))(naRi(υ)-∑j∈NaRj(υ))(i∈N)。接著,考慮個體合理性,拓展所導(dǎo)出的數(shù)學(xué)優(yōu)化模型,獲得區(qū)間值最小二乘核仁解。然后,討論最小二乘預(yù)核仁解和核仁解的一些重要性質(zhì),如,存在性和唯一性、有效性、可加性、對稱性、匿名性,等。最后,利用供應(yīng)鏈合作利益分配的數(shù)學(xué)算例驗證所提出的二次規(guī)劃模型和方法的合理性、有效性和優(yōu)越性。
[Abstract]:In view of the phenomenon that alliance value (or characteristic function) is often expressed as interval value rather than real number in cooperative game, two new quadratic programming methods are proposed. The interval valued least square pre-nucleolus solution and nucleolus solution of interval valued cooperative game for n-person are obtained effectively. First of all, by using the squared excess L(S)-xL(S))2 (v L(S)-xL(S))2), a quadratic programming model for solving the interval-valued least-squares prenucleolar solution is constructed, and based on this, the interval value allocation of the persons in each bureau is determined. Among them, L(N)/n = L(N)/n 1 / 1 / n ~ 2 / n ~ (2) Li (v ~-鈭,
本文編號:1978900
本文鏈接:http://sikaile.net/kejilunwen/yysx/1978900.html
最近更新
教材專著