W-B-K方程的多辛Preissmann格式
發(fā)布時間:2018-05-12 02:01
本文選題:Hamilton系統(tǒng) + Preissmann格式; 參考:《蘭州理工大學學報》2017年01期
【摘要】:引入正則動量,驗證了W-B-K方程具有Hamilton系統(tǒng)多辛格式,并證實此格式具有多辛守恒律、局部能量守恒律和動量守恒律.基于Hamilton空間體系的多辛理論研究了W-B-K方程的數(shù)值解法,利用中心Preissmann方法構(gòu)造離散多辛格式的途徑,并構(gòu)造了一種典型的半隱式的多辛格式,該格式滿足多辛守恒律.數(shù)值算例結(jié)果表明該多辛離散格式具有較好的長時間數(shù)值穩(wěn)定性.
[Abstract]:By introducing regular momentum, it is proved that the W-B-K equation has multiple symplectic schemes for Hamilton systems, and that the schemes have multi-symplectic conservation laws, local energy conservation laws and momentum conservation laws. Based on the multi-symplectic theory of Hamilton space system, the numerical solution of W-B-K equation is studied. The method of constructing discrete multi-symplectic scheme by using the central Preissmann method is presented. A typical semi-implicit multi-symplectic scheme is constructed, which satisfies the multi-symplectic conservation law. Numerical results show that the multi-symplectic discrete scheme has good numerical stability for a long time.
【作者單位】: 普洱學院數(shù)學系;
【基金】:云南省教育廳基金(2015y490)
【分類號】:O241.82
【相似文獻】
相關(guān)期刊論文 前3條
1 楊國錄;四點時空偏心Preissmann格式的應(yīng)用問題[J];泥沙研究;1991年04期
2 王俊杰;王連堂;;一類二階KdV類型水波方程的多辛Preissmann格式[J];應(yīng)用數(shù)學學報;2014年03期
3 ;[J];;年期
,本文編號:1876606
本文鏈接:http://sikaile.net/kejilunwen/yysx/1876606.html
最近更新
教材專著