埃博拉病毒病的傳播模型及其防控仿真
發(fā)布時間:2018-05-09 19:33
本文選題:埃博拉病毒病 + SEIR傳染病模型 ; 參考:《大連工業(yè)大學學報》2017年03期
【摘要】:為研究埃博拉病毒病的流行規(guī)律和發(fā)展趨勢,選用世界衛(wèi)生組織(WHO)發(fā)布的利比里亞(Liberia)從2014年5月25日至11月16日的統(tǒng)計數(shù)據(jù),分別對控前和控后兩個階段建立SEIR傳染病模型,模型中的傳染率參數(shù)在采取控制措施后發(fā)生變化。利用最小二乘法擬合及Matlab軟件,模擬傳染病流行趨勢,擬合最優(yōu)參數(shù)值,并給出仿真圖。對干預措施開始時間作敏感度分析,發(fā)現(xiàn)累計最大感染人數(shù)對其呈指數(shù)增長規(guī)律,模型預測每延遲1d開始干預措施,累計最大感染人數(shù)會增加200多人。得出基本再生數(shù)的公式,控前R0=1.43,控后R1=0.2,說明采取的宣傳教育、追蹤隔離等控制措施是有效的。
[Abstract]:In order to study the epidemic pattern and development trend of Ebola virus disease, the SEIR epidemic model was established from May 25 to November 16, 2014 with the statistical data of Liberia published by World Health Organization (WHO) from May 25 to November 16, 2014. The infection rate parameters in the model change after taking control measures. By using least square fitting and Matlab software, the epidemic trend of infectious diseases is simulated, the optimum parameter value is fitted, and the simulation diagram is given. The sensitivity analysis of the intervention at the beginning time showed that the cumulative maximum number of infections increased exponentially, and the model predicted that the cumulative maximum number of infections would increase by more than 200 people with each delay of one day to start the intervention. The formula of the basic number of regeneration is obtained, the control measures before and after control are 1.43 and 0.2respectively, which shows that the control measures such as propaganda and education, tracking and isolation are effective.
【作者單位】: 沈陽農(nóng)業(yè)大學理學院;
【基金】:遼寧省教育科學規(guī)劃課題(JG16DB389) 中華農(nóng)業(yè)科教基金教材建設(shè)研究項目(NKJ201503031) 遼寧省教育廳科學研究項目(LSNYB201609)
【分類號】:O175
,
本文編號:1867136
最近更新
教材專著