天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

分?jǐn)?shù)階積分微分方程的B樣條小波解法

發(fā)布時(shí)間:2018-05-05 17:37

  本文選題:B樣條小波 + 分?jǐn)?shù)階微積分; 參考:《寧夏大學(xué)》2017年碩士論文


【摘要】:分?jǐn)?shù)階微積分被稱為現(xiàn)實(shí)世界和數(shù)學(xué)理論完美結(jié)合的一種嶄新的數(shù)學(xué)工具,被廣泛應(yīng)用到粘彈性力學(xué)、統(tǒng)計(jì)與隨機(jī)過(guò)程、信號(hào)分析處理等各個(gè)不同的領(lǐng)域.分?jǐn)?shù)階微積分方程比整數(shù)階微積分方程更能真實(shí)客觀地刻畫(huà)許多復(fù)雜的物理過(guò)程,成為復(fù)雜力學(xué)與物理過(guò)程數(shù)學(xué)建模的重要工具之一.因此,有關(guān)分?jǐn)?shù)階微積分方程的理論與計(jì)算方法的研究就顯得尤為迫切,在應(yīng)用領(lǐng)域起著至關(guān)重要的作用.遺憾的是,大部分分?jǐn)?shù)階積分微分方程的解析解很復(fù)雜,計(jì)算困難,消耗大量時(shí)間;況且并非所有的分?jǐn)?shù)階微積分方程都能得到其解析解.因此,發(fā)展新數(shù)值算法,建立分?jǐn)?shù)階微積分方程的數(shù)值方法是非常必要的,有著重要的理論意義和實(shí)際應(yīng)用價(jià)值.本文主要求解了幾類Riemann-Liouville分?jǐn)?shù)階微積分方程.第一章簡(jiǎn)要介紹了研究背景、研究意義及國(guó)內(nèi)外研究現(xiàn)狀.第二章推導(dǎo)了半正交B樣條小波的分?jǐn)?shù)階積分算子矩陣.第三章證明了第二類分?jǐn)?shù)階Fredholm積分方程解的存在唯一性,利用半正交B樣條小波求解了第二類分?jǐn)?shù)階Fredholm積分方程的數(shù)值解.算例針對(duì)精確解未知的方程給出其數(shù)值解.第四章證明了第二類分?jǐn)?shù)階Fredholm積分方程組解的存在唯一性,利用半正交B樣條小波求解第二類分?jǐn)?shù)階Fredholm積分方程組的數(shù)值解.并針對(duì)精確解未知的情況給出誤差分析.第五章研究了分?jǐn)?shù)階非線性Fredholm積分微分方程,B樣條小波分?jǐn)?shù)階積分算子矩陣將積分微分方程離散為代數(shù)方程組,數(shù)值算例驗(yàn)證了此方法的可行性和有效性.第六章總結(jié)歸納了本文所做的工作并對(duì)將來(lái)的工作加以展望.
[Abstract]:Fractional calculus is called a new mathematical tool which combines the real world and mathematical theory perfectly. It is widely used in various fields such as viscoelastic mechanics, statistics and stochastic processes, signal analysis and processing, etc. Fractional calculus equations can describe many complex physical processes more realistically and objectively than integer order calculus equations and become one of the important tools for mathematical modeling of complex mechanics and physical processes. Therefore, the research on the theory and calculation method of fractional calculus equation is particularly urgent and plays an important role in the application field. Unfortunately, the analytical solutions of most fractional integro-differential equations are very complex, difficult to calculate and consume a lot of time. Moreover, not all fractional calculus equations can obtain their analytical solutions. Therefore, it is very necessary to develop a new numerical algorithm and establish the numerical method of fractional calculus equation, which has important theoretical significance and practical application value. In this paper, several kinds of Riemann-Liouville fractional calculus equations are solved. The first chapter briefly introduces the research background, research significance and research status at home and abroad. In chapter 2, the fractional integral operator matrix of semi-orthogonal B-spline wavelet is derived. In chapter 3, we prove the existence and uniqueness of the solution of the second kind of fractional Fredholm integral equation, and use semi-orthogonal B-spline wavelet to solve the numerical solution of the second kind of fractional Fredholm integral equation. An example is given to give the numerical solution for the equation with unknown exact solution. In chapter 4, we prove the existence and uniqueness of the solution of the second kind of fractional Fredholm integral equations, and use semi-orthogonal B-spline wavelet to solve the numerical solution of the second kind of fractional Fredholm integral equations. The error analysis is given for the unknown exact solution. In chapter 5, the integral differential equations are discretized into algebraic equations by B-spline wavelet fractional integral operator matrix of fractional nonlinear Fredholm integro-differential equations. Numerical examples demonstrate the feasibility and validity of this method. The sixth chapter summarizes the work done in this paper and looks forward to the future work.
【學(xué)位授予單位】:寧夏大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O241.8

【參考文獻(xiàn)】

相關(guān)期刊論文 前6條

1 黃潔;韓惠麗;;應(yīng)用Legendre小波求解非線性分?jǐn)?shù)階Volterra積分微分方程[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2014年04期

2 張倩;韓惠麗;張盼盼;;基于有理Haar小波求解分?jǐn)?shù)階第2類Fredholm積分方程[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期

3 儀明旭;陳一鳴;魏金俠;劉玉風(fēng);;應(yīng)用Haar小波求解非線性分?jǐn)?shù)階Fredholm積分微分方程[J];河北師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年05期

4 尹建華;任建婭;儀明旭;;Legendre小波求解非線性分?jǐn)?shù)階Fredholm積分微分方程[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期

5 谷學(xué)偉;陳義;;不動(dòng)點(diǎn)理論及其應(yīng)用[J];太原師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年02期

6 李靜;;Cauchy-Schwarz不等式的四種形式的證明及應(yīng)用[J];宿州學(xué)院學(xué)報(bào);2008年06期

相關(guān)博士學(xué)位論文 前1條

1 楊雪花;正交樣條與擬小波配置法在分?jǐn)?shù)階偏微分方程數(shù)值解中的應(yīng)用[D];湖南師范大學(xué);2014年

相關(guān)碩士學(xué)位論文 前5條

1 全曉靜;非線性分?jǐn)?shù)階積分方程的Adomian解法[D];寧夏大學(xué);2015年

2 黃潔;非線性分?jǐn)?shù)階Volterra積分微分方程的小波數(shù)值解法[D];寧夏大學(xué);2015年

3 張盼盼;R-L分?jǐn)?shù)階積分方程及積分微分方程的數(shù)值解法[D];寧夏大學(xué);2014年

4 賴丹;第二類邊界積分方程高精度算法[D];電子科技大學(xué);2013年

5 吳光旭;第二類非線性Fredholm積分方程的迭代Galerkin法[D];電子科技大學(xué);2012年



本文編號(hào):1848664

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/1848664.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2850d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com