基于海量IC卡數(shù)據(jù)的乘客出行網(wǎng)絡(luò)及動力學研究
本文選題:復合網(wǎng)絡(luò) + 復雜網(wǎng)絡(luò)。 參考:《西南大學》2017年碩士論文
【摘要】:在現(xiàn)代社會中公共交通系統(tǒng)一直充當著重要的角色,無論在實踐中還是學術(shù)中,交通問題極大地引起了各界的注意。伴隨著交通工具的不斷普及,乘客出行量逐年增加,公交與地鐵換乘不協(xié)調(diào)、交通擁擠及城市公共交通系統(tǒng)整體運營效率低等問題日益凸顯。如何提升城市公共交通系統(tǒng)的運輸效率,已成為交通領(lǐng)域的熱點話題。在如今大數(shù)據(jù)的時代背景下,通過對海量、多樣化的交通數(shù)據(jù)進行挖掘,不僅能夠分析出公共交通網(wǎng)絡(luò)的拓撲特征,同時也能挖掘出乘客的出行行為規(guī)律,對提升公交與地鐵之間的高效配合以及公共交通的綜合運輸能力具有重要的現(xiàn)實意義。首先,本文通過構(gòu)建公交-地鐵復合網(wǎng)絡(luò),并分析了復合交通網(wǎng)絡(luò)的拓撲性質(zhì)及魯棒性;其次,利用基于多頭絨泡菌仿生模型改進的粒子群算法,對地鐵乘客出行網(wǎng)絡(luò)進行社團劃分;最后,采用非負矩陣分解-自回歸模型,對地鐵乘客動態(tài)起訖(Origin Destination,OD)矩陣進行預測。本文的主要貢獻如下:(1)實現(xiàn)構(gòu)建公交-地鐵復合網(wǎng)絡(luò),同時對比分析復合網(wǎng)絡(luò)與子網(wǎng)絡(luò)的拓撲特性及魯棒性:通過采用兩種建模方式(Space L方式、Space P方式)構(gòu)建了公交-地鐵復合站點網(wǎng)絡(luò)及公交-地鐵復合換乘網(wǎng)絡(luò),并對比分析兩種復合網(wǎng)絡(luò)與其相應模式下公交子網(wǎng)絡(luò)與地鐵子網(wǎng)絡(luò)的拓撲特征值。此外,對比分析復合網(wǎng)絡(luò)與子網(wǎng)絡(luò)在不同攻擊模式下的魯棒性指標,即最大連通子圖相對大小、平均路徑長度、網(wǎng)絡(luò)直徑、網(wǎng)絡(luò)性能參數(shù)等魯棒性指標的變化情況。并以中國西部某市的公交網(wǎng)絡(luò)及地鐵網(wǎng)絡(luò)數(shù)據(jù)進行實證分析,結(jié)果表明:該市公交-地鐵網(wǎng)絡(luò)復合網(wǎng)絡(luò)、公交子網(wǎng)絡(luò)、地鐵子網(wǎng)絡(luò)都是小世界網(wǎng)絡(luò),且具有無標度特性。復合網(wǎng)絡(luò)在隨機攻擊模式下的魯棒性較強,然而在目標攻擊模式下較弱;對于這兩種攻擊模式,公交-地鐵復合站點網(wǎng)絡(luò)的魯棒性均優(yōu)于公交子網(wǎng)絡(luò)和地鐵子網(wǎng)絡(luò)。(2)實現(xiàn)對地鐵乘客出行網(wǎng)絡(luò)的社團劃分:通過引入多頭絨泡菌模型得到目標函數(shù)即網(wǎng)絡(luò)模塊度的粗略解,并以此作為初始解,結(jié)合粒子群算法對模塊度函數(shù)進行優(yōu)化求解,從而完成對乘客出行網(wǎng)絡(luò)的社團劃分。以中國西部某市交通IC卡信息為基礎(chǔ),構(gòu)建地鐵乘客出行網(wǎng)絡(luò),并同粒子群算法進行對比,實驗結(jié)果表明:在對加權(quán)網(wǎng)絡(luò)進行社團挖掘時,基于多頭絨泡菌網(wǎng)絡(luò)模型改進的粒子群算法在解的可行性方面有了明顯提升。(3)實現(xiàn)基于非負矩陣分解-自回歸的算法來對地鐵乘客動態(tài)OD矩陣進行預測:首先,通過非負矩陣分解得到地鐵乘客的出行特征量,然后基于非負矩陣分解得到系數(shù)矩陣建立自回歸模型,從而完成對地鐵乘客出行流量的預測。并以中國西部某市的地鐵乘客流量數(shù)據(jù)為基礎(chǔ),通過與K近鄰、C4.5、樸素貝葉斯、隨機森林等回歸算法進行對比,實驗結(jié)果表明,該算法的預測準確率有顯著提升。
[Abstract]:In modern society, the public transportation system has been playing an important role, whether in practice or academic, traffic problems have attracted great attention from all walks of life. With the continuous popularization of transportation, passenger travel volume increases year by year, bus and subway transfer is not coordinated, traffic congestion and the urban public transport system as a whole low efficiency and other problems become increasingly prominent. How to improve the transport efficiency of urban public transport system has become a hot topic in the field of transportation. Under the background of big data's times, through mining massive and diversified traffic data, not only can the topological characteristics of public transport network be analyzed, but also the travel behavior rules of passengers can be mined. It is of great practical significance to improve the efficient cooperation between public transportation and subway and the comprehensive transportation capacity of public transportation. First of all, this paper constructs the bus-subway complex network, and analyzes the topological properties and robustness of the complex traffic network. Secondly, using the improved particle swarm optimization algorithm based on the bionic model of polycephalus, Finally, the non-negative matrix factorization-autoregressive model is used to predict the dynamic origin derivation of subway passengers. The main contributions of this paper are as follows: (1) realizing the construction of a bus-subway composite network. At the same time, the topological characteristics and robustness of the composite network and the sub-network are compared and analyzed. By using two modeling methods, the bus-subway compound station network and the bus-subway complex transfer network are constructed by adopting two modeling methods: the space L mode and the space P mode. The topological eigenvalues of two kinds of complex networks and their corresponding modes are compared and analyzed. In addition, the robustness indexes of composite network and subnetwork under different attack modes are compared and analyzed, such as the relative size of maximum connected subgraph, average path length, network diameter, network performance parameters, and so on. Based on the data of public transport network and subway network in a certain city in western China, the results show that the bus subway network, bus subnetwork and subway subnetwork are small world networks, and have scale-free characteristics. The robustness of compound network in random attack mode is stronger than that in target attack mode. The robustness of the bus-subway complex station network is better than that of the bus sub-network and the subway sub-network. It realizes the community division of the subway passenger travel network. The objective function, that is, the rough solution of the network modularity, is obtained through the introduction of the multi-headed bacterial model. As the initial solution, the modular degree function is solved optimally with particle swarm optimization (PSO), and the community partition of passenger travel network is completed. Based on the IC card information of a certain city in western China, the subway passenger travel network is constructed and compared with the particle swarm optimization algorithm. The experimental results show that: when mining the weighted network, The improved particle swarm optimization algorithm based on the multi-headed Particle Swarm Optimization (PSO) model has significantly improved the feasibility of the solution. (3) based on the non-negative matrix factorization and autoregressive algorithm to predict the dynamic OD matrix of subway passengers: first of all, The travel characteristic quantity of subway passengers is obtained by non-negative matrix decomposition, and then the autoregressive model is established based on non-negative matrix decomposition to predict the travel flow of subway passengers. Based on the data of subway passenger flow in a certain city in western China, the prediction accuracy of this algorithm is obviously improved by comparing it with K-nearest neighbor C4.5, naive Bayes, random forest and other regression algorithms.
【學位授予單位】:西南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:U12;O157.5
【參考文獻】
相關(guān)期刊論文 前10條
1 任濤;王一帆;劉苗苗;徐艷杰;;Analysis of robustness of urban bus network[J];Chinese Physics B;2016年02期
2 羅藝;錢大琳;;公交—地鐵復合網(wǎng)絡(luò)構(gòu)建及網(wǎng)絡(luò)特性分析[J];交通運輸系統(tǒng)工程與信息;2015年05期
3 徐鳳;朱金福;苗建軍;;基于復雜網(wǎng)絡(luò)的空鐵復合網(wǎng)絡(luò)的魯棒性研究[J];復雜系統(tǒng)與復雜性科學;2015年01期
4 肖延東;老松楊;侯綠林;白亮;;Optimization of robustness of network controllability against malicious attacks[J];Chinese Physics B;2014年11期
5 李鋒;;一種有向網(wǎng)絡(luò)中社團結(jié)構(gòu)劃分的啟發(fā)式算法[J];系統(tǒng)管理學報;2014年04期
6 胡繼華;鄧俊;黃澤;;結(jié)合出行鏈的公交IC卡乘客下車站點判斷概率模型[J];交通運輸系統(tǒng)工程與信息;2014年02期
7 丁益民;丁卓;楊昌平;;基于社團結(jié)構(gòu)的城市地鐵網(wǎng)絡(luò)模型研究[J];物理學報;2013年09期
8 陳紹輝;陳艷艷;尹長勇;;基于特征站點的公交IC卡數(shù)據(jù)站點匹配方法研究[J];北京工業(yè)大學學報;2012年06期
9 趙慧;;動態(tài)OD估計方法研究綜述[J];交通標準化;2011年22期
10 王波;柯紅紅;蔣天發(fā);;基于復雜網(wǎng)絡(luò)理論的杭州公交網(wǎng)絡(luò)建模與特性分析[J];武漢大學學報(工學版);2011年03期
,本文編號:1819101
本文鏈接:http://sikaile.net/kejilunwen/yysx/1819101.html