擬Banach空間上含參數(shù)的二次-可加混合型函數(shù)方程的解和Hyers-Ulam-Rassias穩(wěn)定性
發(fā)布時(shí)間:2018-04-25 21:41
本文選題:Hyers-Ulam-Rassias穩(wěn)定性 + 一般解; 參考:《數(shù)學(xué)物理學(xué)報(bào)》2017年05期
【摘要】:該文討論了帶有參數(shù)s的二次-可加混合型函數(shù)方程2k[f(x+ky)+f(kx+y)]=k(1-s+k+ks+2k~2)f(x+y)+k(1-s-3k+ks+2k~2)f(x-y)+2kf(kx)+2k(s+k-ks-2k~2)f(x)+2(1-k-s)f(ky)+2ksf(y)的一般解,同時(shí)研究了該函數(shù)方程在擬Banach空間上的Hyers-Ulam-Rassias穩(wěn)定性,這里k1,s≠1-2k.
[Abstract]:In this paper, we discuss the general solution of the quadratic additive mixed type function equation 2k [FG x KY) f(kx y)] k + s 2k~2)f(x ys) k(1-s-3k ks 2kn 2k KN 2kfnx) 2k(s k-ks-2kn 2kn + 2kn) 21-k-sfky) 2ksfy). We also study the Hyers-Ulam-Rassias stability of the function equation on the quasi Banach space, where k1s 鈮,
本文編號:1803092
本文鏈接:http://sikaile.net/kejilunwen/yysx/1803092.html
最近更新
教材專著