廣義Halin圖的競爭數(shù)
發(fā)布時間:2018-04-22 05:05
本文選題:競爭圖 + 競爭數(shù)。 參考:《石家莊學(xué)院學(xué)報》2017年03期
【摘要】:對于任意圖G,G并上足夠多的孤立頂點就為某個無圈有向圖的競爭圖.這樣加進(jìn)來的孤立頂點的最少個數(shù)稱為圖G的競爭數(shù),記作k(G).一般來說計算圖的競爭數(shù)是比較困難的,并且通過計算圖的競爭數(shù)來刻畫圖已成為研究競爭圖理論的一個重要內(nèi)容.廣義Halin圖包括一個樹的平面嵌入和一個連接樹的葉子的圈.針對廣義Halin圖進(jìn)行研究,確定了廣義Halin圖的競爭數(shù).
[Abstract]:For any graph G G and sufficient isolated vertices, it is a competitive graph of an acyclic digraph. The minimum number of isolated vertices added in is called the competition number of graph G. Generally speaking, it is difficult to calculate the competition number of graph, and it has become an important content to study the competition graph theory by calculating the competition number of graph. The generalized Halin graph includes the planar embedding of a tree and a circle of leaves connected to the tree. The competition number of generalized Halin graph is determined by studying the generalized Halin graph.
【作者單位】: 石家莊學(xué)院理學(xué)院;
【基金】:河北省自然科學(xué)基金(A2015106045)
【分類號】:O157.5
,
本文編號:1785703
本文鏈接:http://sikaile.net/kejilunwen/yysx/1785703.html
最近更新
教材專著