爬山算法構(gòu)造小階廣義Howell設(shè)計(jì)
發(fā)布時(shí)間:2018-03-02 16:05
本文選題:爬山算法 切入點(diǎn):廣義Howell設(shè)計(jì) 出處:《北京交通大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:廣義Howell設(shè)計(jì)是組合設(shè)計(jì)理論的一個(gè)重要的研究方向,是一類雙可分解的組合設(shè)計(jì),廣義Howell是編碼理論中用到的重要工具之一,可以用來(lái)構(gòu)造最優(yōu)雙常重碼,多常重碼等,并且可以用來(lái)構(gòu)造置換陣列,進(jìn)而用于構(gòu)造置換碼,在通信領(lǐng)域中有著重要的應(yīng)用.爬山算法是一種局部擇優(yōu)的啟發(fā)式隨機(jī)搜索算法,是對(duì)深度優(yōu)先搜索的一種改進(jìn),該算法每次從當(dāng)前解的臨近解空間中選擇一個(gè)最優(yōu)解作為當(dāng)前解,直到達(dá)到一個(gè)局部最優(yōu)解.爬山算法雖然有會(huì)陷入局部最優(yōu)的缺陷,但是效率比較高,本文給出利用爬山算法構(gòu)造小階廣義Howell設(shè)計(jì)的方法.本文分四個(gè)章節(jié)進(jìn)行介紹:第一章,對(duì)爬山算法進(jìn)行簡(jiǎn)單介紹,并綜述了有關(guān)廣義Howell設(shè)計(jì)的研究背景及研究現(xiàn)狀,給出相關(guān)概念及符號(hào)表示,同時(shí)給出爬山算法在組合設(shè)計(jì)中的應(yīng)用實(shí)例.第二章,詳細(xì)介紹爬山算法在構(gòu)造因子分解中的應(yīng)用,廣義Howell設(shè)計(jì)實(shí)際上是兩個(gè)因子分解正交的結(jié)果,本節(jié)給出利用爬山算法構(gòu)造兩個(gè)正交的因子分解,進(jìn)而構(gòu)造出廣義Howell設(shè)計(jì),并給出利用該算法找到的廣義Howell設(shè)計(jì)結(jié)果.第三章,對(duì)該算法在構(gòu)造廣義Howell設(shè)計(jì)的細(xì)節(jié)進(jìn)行詳細(xì)介紹及分析,并對(duì)算法進(jìn)行優(yōu)化.第四章,對(duì)本文的主要內(nèi)容進(jìn)行總結(jié)。
[Abstract]:Generalized Howell design is an important research direction of combinatorial design theory. It is a kind of bidecomposable combinatorial design. Generalized Howell is one of the important tools used in coding theory. And it can be used to construct permutation array and then to construct permutation code, which has important applications in the field of communication. Mountain climbing algorithm is a locally optimal heuristic random search algorithm, which is an improvement to depth first search. The algorithm selects an optimal solution as the current solution every time from the adjacent solution space of the current solution until a local optimal solution is reached. Although the mountain climbing algorithm has the defect of falling into the local optimum, it is more efficient. In this paper, a method of constructing small order generalized Howell design by using mountain climbing algorithm is presented. This paper is divided into four chapters: chapter 1, a brief introduction of mountain climbing algorithm, and a review of the research background and research status of generalized Howell design. The related concepts and symbolic representations are given, and the application examples of mountain climbing algorithm in combinatorial design are given. In chapter 2, the application of mountain climbing algorithm in constructing factorization is introduced in detail. The generalized Howell design is actually the result of orthogonal two factorizations. In this section, two orthogonal factorizations are constructed by using the mountain climbing algorithm, and then the generalized Howell design is constructed, and the result of the generalized Howell design obtained by the algorithm is given. This paper introduces and analyzes the details of the algorithm in constructing the generalized Howell design and optimizes the algorithm. Chapter 4th summarizes the main contents of this paper.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O157.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 王金先;關(guān)于Varma-Howell猜想[J];杭州師范學(xué)院學(xué)報(bào)(自然科學(xué)版);1989年06期
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 汪洋;“可持續(xù)發(fā)展意味著價(jià)值共享”[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2010年
相關(guān)碩士學(xué)位論文 前1條
1 呂磊;爬山算法構(gòu)造小階廣義Howell設(shè)計(jì)[D];北京交通大學(xué);2017年
,本文編號(hào):1557211
本文鏈接:http://sikaile.net/kejilunwen/yysx/1557211.html
最近更新
教材專著