一類X型矩陣特征值反問題
發(fā)布時間:2018-01-16 11:38
本文關鍵詞:一類X型矩陣特征值反問題 出處:《大連交通大學》2015年碩士論文 論文類型:學位論文
【摘要】:矩陣特征值反問題是線性代數(shù)的一個重要分支,在跨越廣泛的科學領域中應用普遍。自20世紀50年代第一篇關于這方面文章發(fā)表以來,越來越多的此方面研究論文相繼公開發(fā)表,獲得了很多深刻而且有益的結果。當今研究的目標就是構造出了一些實際科學應用中需要的特征向量和特征值的矩陣。本文研究目標定位于構造一類X型矩陣,從而研究其特征值反問題及其廣義特征值反問題,利用方程組聯(lián)立求解并遞推得出問題解存在并且唯一的條件。全文由以下四章構成,內(nèi)容如下:第一章:緒論。首先介紹反問題概念、歷史,其次介紹矩陣特征值反問題的當今研究現(xiàn)狀、難點及未來應用,最后對本論文所研究的X型矩陣的相關概念進行介紹。第二章:一類基本X型矩陣特征值反問題。本章首先提出一類X型矩陣的特征值反問題,并對矩陣存在的條件進行推導,得出一類X型矩陣特征值反問題解存在并且唯一所需要滿足的條件,在此基礎上將X型矩陣右上角的元素剔除,從而得到了我們常見的下三角矩陣,也可稱其為退化X型矩陣,按照研究X型矩陣特征值反問題的方法,對此類下三角矩陣的特征值反問題進行研究并得到一類退化X型矩陣特征值反問題解存在并且唯一所需要滿足的條件并給出解的表達式。第三章:一類特殊退化X型矩陣的特征值反問題。本章在第二章中提出的退化X型矩陣的基礎上加以改動,得到一類上三角矩陣,并分別將矩陣元素之間的關系按照等值關系、線性關系分為兩類,然后對每一類矩陣的特征值反問題進行研究,分別得到一類特殊退化X型矩陣特征值反問題解存在并且唯一所需要滿足的條件并給出解的表達式。最后給出兩個相應的數(shù)值例子分別進行了驗證。第四章:一類特殊退化X型矩陣的廣義特征值反問題。本章在前三章的基礎上,將對矩陣特征值反問題的研究擴展到對矩陣廣義特征值反問題的研究上,研究了一類奇數(shù)階上三角矩陣的廣義特征值反問題,得出一類特殊退化X型矩陣廣義特征值反問題解存在并且唯一的條件并給出解的表達式。最后給出數(shù)值例子對算法的有效性進行驗證。
[Abstract]:Inverse eigenvalue problem of matrices is an important branch of linear algebra, which is widely used in many fields of science. Since 1950s, the first article on this field has been published. More and more research papers have been published in this field. The goal of the present study is to construct some characteristic vectors and eigenvalues needed in practical scientific applications. The purpose of this paper is to construct a class of X-type matrices. Therefore, the inverse eigenvalue problem and its generalized inverse eigenvalue problem are studied, and the existence and unique conditions of the solution are obtained by simultaneous solution of equations. The paper is composed of four chapters. The contents are as follows: chapter one: introduction. Firstly, the concept of inverse problem, history, and then the current research status, difficulties and future application of inverse matrix eigenvalue problem are introduced. Finally, the related concepts of X-type matrix studied in this paper are introduced. Chapter two: the inverse eigenvalue problem of a basic X-type matrix. In this chapter, we first propose a class of inverse eigenvalue problem of X-type matrix. The condition of the existence of matrix is deduced, and the condition that the inverse solution of eigenvalue of type X matrix exists and only needs to be satisfied is obtained. On this basis, the elements in the upper right corner of the matrix of type X are eliminated. Thus we get our common lower triangular matrix, which can also be called degenerate X-type matrix, according to the method of studying inverse eigenvalue problem of X-type matrix. In this paper, we study the inverse eigenvalue problem of this kind of lower triangular matrices, and obtain the conditions for the existence and uniqueness of the inverse eigenvalue problem of a class of degenerate X-type matrices, and give the expression of the solution. A class of inverse eigenvalue problems for a class of special degenerate X-type matrices. This chapter is modified on the basis of the degenerate X-type matrices proposed in Chapter 2. A class of upper triangular matrices is obtained, and the relations between matrix elements are divided into two categories according to the equivalence relationship. Then the inverse eigenvalue problem of each kind of matrix is studied. The conditions for the existence and uniqueness of inverse solutions of eigenvalues of a special degenerate X-type matrix are obtained and the expressions of the solutions are given. Finally, two corresponding numerical examples are given. Chapter 4th:. Generalized eigenvalue inverse problem for a class of special degenerate X-type matrices. This chapter is based on the previous three chapters. In this paper, the inverse problem of matrix eigenvalue is extended to the inverse problem of generalized eigenvalue of matrix, and the inverse problem of generalized eigenvalue of a class of upper triangular matrices of odd order is studied. The existence and uniqueness conditions of inverse solutions for a class of special degenerate X-type matrices with generalized eigenvalue problems are obtained and the expressions of the solutions are given. Finally, a numerical example is given to verify the validity of the algorithm.
【學位授予單位】:大連交通大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:O151.21
【相似文獻】
相關期刊論文 前10條
1 韓紅,楊文泉,杜微微;兩個矩陣特征值改變量的進一步估計[J];哈爾濱師范大學自然科學學報;2004年02期
2 張鳳偉;姜雄;;幾個特殊矩陣特征值的討論[J];遼寧科技學院學報;2006年04期
3 張振躍;關于非虧損矩陣特征值的擾動[J];計算數(shù)學;1986年01期
4 施吉林,肖丁;任意矩陣特征值擾動的估計[J];高等學校計算數(shù)學學報;1987年02期
5 呂p孕,
本文編號:1432901
本文鏈接:http://sikaile.net/kejilunwen/yysx/1432901.html
最近更新
教材專著