基于八叉樹編碼的點(diǎn)云壓縮研究與實(shí)現(xiàn)
發(fā)布時(shí)間:2023-04-02 07:54
點(diǎn)云壓縮是目前計(jì)算機(jī)視覺、機(jī)器人、以及虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)領(lǐng)域的熱點(diǎn)話題,它正成為發(fā)展最快的技術(shù)之一,但在將其有效地應(yīng)用于各種實(shí)際場(chǎng)景之前,仍需要攻克一些難題。當(dāng)在各種應(yīng)用中進(jìn)行實(shí)現(xiàn)時(shí),點(diǎn)云數(shù)據(jù)的大小仍是一個(gè)主要問題。本文基于點(diǎn)云壓縮的各種現(xiàn)有技術(shù),主要比較了兩種點(diǎn)云壓縮技術(shù)的性能,即基于雙緩存八叉樹點(diǎn)云編碼和基于單八叉樹的點(diǎn)云編碼,并對(duì)這兩種技術(shù)展開了詳細(xì)分析和討論。此外。論文提出一種改進(jìn)的點(diǎn)云壓縮八叉樹算法,稱為單八叉樹靜態(tài)點(diǎn)云壓縮算法,此算法的提出受到雙緩存八叉樹編碼算法(Kammerl,2012)的啟發(fā)。本文所提出的單八叉樹靜態(tài)點(diǎn)云壓縮算法使用與雙緩存八叉樹壓縮類似的壓縮模型,遵循網(wǎng)絡(luò)上點(diǎn)云壓縮和解壓縮的整個(gè)生命周期。它通過(guò)使用八叉樹數(shù)據(jù)結(jié)構(gòu)在空間上分解點(diǎn)云來(lái)進(jìn)行初始化,然后使用二進(jìn)制流對(duì)該結(jié)構(gòu)進(jìn)行比特掩蔽和序列化以表示用于編碼和解碼點(diǎn)信息的八叉樹結(jié)構(gòu)。此外,它使用點(diǎn)位置編碼來(lái)編碼點(diǎn)的附加信息,例如,顏色,NORMALS等。仿真結(jié)果顯示,本文所提出的八叉樹算法對(duì)于靜態(tài)點(diǎn)云具有比雙緩存八叉樹算法更好的壓縮性能。相比于雙緩存八叉樹算法,雖然所提方法的視覺性能沒有改善,但壓縮比明顯提高...
【文章頁(yè)數(shù)】:60 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
List of Abbreviations
Chapter 1:Introduction
1.1 Overview
1.2 Motivation
1.3 Problem Statement
1.4 Thesis Outline
Chapter 2:Key Technologies
2.1 Point Cloud Compression
2.2 Compression Techniques
2.3 Point Cloud Library (PCL) Properties
2.3.1 Filtration
2.3.2 Features
2.4 Data Structures for Point Cloud Compression
Summary
Chapter 3:Related Works
3.1 Achieving Real-Time Compression using Double Buffer Octree Technique
3.2 Double Buffer Octree
3.3 Conventional Image Compression Technique for data transmission for Point Clouds
3.4 XML based Compression Scheme for dense point cloud streaming
3.5 Efficient Processing of Large 3d point cloud
3.6 Octree-based Algorithm for Scattered Point Clouds
3.7 Combination of Octree and Quadtree for Point Cloud Compression
3.8 Usage of Octree Data Structure
Summary
Chapter 4:Single Octree-based Static Point Cloud Compression
4.1 Octree Based Encoding for Point Cloud Compression
4.2 Significance of Outliers removal for Octree and Compression
Summary
Chapter 5:Simulation Results
5.1 Tools and Technologies
5.2 Compression Results
5.3 Double Buffer Vs Single Octree
Summary
Chapter 6:Conclusion and Future Work
6.1 Conclusion
6.2 Future Work
Reference
本文編號(hào):3778851
【文章頁(yè)數(shù)】:60 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
List of Abbreviations
Chapter 1:Introduction
1.1 Overview
1.2 Motivation
1.3 Problem Statement
1.4 Thesis Outline
Chapter 2:Key Technologies
2.1 Point Cloud Compression
2.2 Compression Techniques
2.3 Point Cloud Library (PCL) Properties
2.3.1 Filtration
2.3.2 Features
2.4 Data Structures for Point Cloud Compression
Summary
Chapter 3:Related Works
3.1 Achieving Real-Time Compression using Double Buffer Octree Technique
3.2 Double Buffer Octree
3.3 Conventional Image Compression Technique for data transmission for Point Clouds
3.4 XML based Compression Scheme for dense point cloud streaming
3.5 Efficient Processing of Large 3d point cloud
3.6 Octree-based Algorithm for Scattered Point Clouds
3.7 Combination of Octree and Quadtree for Point Cloud Compression
3.8 Usage of Octree Data Structure
Summary
Chapter 4:Single Octree-based Static Point Cloud Compression
4.1 Octree Based Encoding for Point Cloud Compression
4.2 Significance of Outliers removal for Octree and Compression
Summary
Chapter 5:Simulation Results
5.1 Tools and Technologies
5.2 Compression Results
5.3 Double Buffer Vs Single Octree
Summary
Chapter 6:Conclusion and Future Work
6.1 Conclusion
6.2 Future Work
Reference
本文編號(hào):3778851
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/3778851.html
最近更新
教材專著