大規(guī)模MIMO系統(tǒng)的3D信道建模和測量
發(fā)布時間:2021-12-24 20:46
大規(guī)模多輸入多輸出(MIMO)是指能夠使用幾百根天線同時為第五代(5G)移動通信系統(tǒng)的一個或多個無線寬帶終端提供大量的數據流的設計系統(tǒng),該系統(tǒng)使用更簡單和擬線性算法來精確地實現波束成形和解碼。在大規(guī)模MIMO網絡成功開發(fā)之前,有一些基本的問題需要得到更好的理解,比如信道建模、相關性設計等。為了對將來的大規(guī)模MIMO無線通信系統(tǒng)的有個更好的評估和設計,我們需要精確的信道模型來描述無線傳播信道。在這篇論文中,我們詳細回顧了大規(guī)模MIMO系統(tǒng),重點介紹了系統(tǒng)的關鍵部件和研究方向,其中包括:在天線單元中使用波束方向圖的優(yōu)點;單個用戶大規(guī)模MIMO系統(tǒng)中的預編碼操作,該預編碼也同時考慮波束方向圖對發(fā)射和接收天線單元的影響。此外,結合不同天線單元垂直空間相關的波束方向圖,我們還提出了一個實用的框架來推導三維(3D)信道模型的統(tǒng)計特性。由于該波束方向圖使用了不同相位激勵方向(DoTS)的偶極子天線單元,對與團簇相關的射線使用了不同的相關權重,因此,可以為每個天線元件提供不同的到達仰角(EAoAS)和偏離仰角(EAoD)。最后,本論文考慮了不同用戶之間的地理位置相關性,將SU-大規(guī)模MIMO信道模型推...
【文章來源】:上海交通大學上海市 211工程院校 985工程院校 教育部直屬院校
【文章頁數】:187 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
Abbreviations
Physical Constants
Symbols
Chapter1 Introduction
1.1 Background
1.2 Motivation
1.3 Contributions
1.4 Thesis Organisation
Chapter2 The Traditional Ray Tracing SCModels for Massive MIMO Communications on Campus Scenarios for Outdoor and Outdoor-to-Indoor
2.1 Introduction
2.2 Overview of Theoretical SCM Model for MIMO System
2.2.1 General Parameters
2.2.1.1 Set Environment, Network Layout, and AntennaArray Parameters
2.2.1.2 Large Scale Parameters
2.2.1.3 Small Scale Parameters
2.2.1.4 Generation of 3-D Channel Coefficient
2.2.1.5 Outdoor 3-D Massive MIMO Channel Models
2.2.1.6 Outdoor-to-Indoor 3-D Massive MIMO ChannelModels
2.3 Summary
Chapter3 Outdoor Channel Measurements and Models for SU-Massive MIMO on Different Scenario: Model, Design,Implementation, and Drawbacks
3.1 Background Information on Massive MIMO
3.1.1 MIMO Orthogonal Frequency Division Multiplexing (OFD-M)
3.1.2 Frame Structure
3.1.3 Physical Channels and Signals in Radio Frame
3.1.4 Signal Measuring
3.1.5 Angle of Arrival and Angle of Departure
3.2 Generic Hardware and Processing Partitioning
3.2.1 Software-Defined Radio platform and Basics
3.2.2 Communication System Block Diagram
3.2.3 USRP Module Block Diagram
3.2.3.1 Software Design
3.2.3.2 Hardware Design
3.2.4 Implementation Features
3.2.4.1 Transmitter
3.2.4.2 Receiver
3.2.5 Measurement’s Setup Parameters
3.2.5.1 LAB-View RX Tool
3.2.6 Outdoor Measurement Scenarios
3.3 Scenario of Outdoor SU-Massive MIMO Performance EvaluationModel
3.3.1 Wireless Propagation and Fading Model
3.3.1.1 Large Scale Fading
3.3.2 Path loss Modelling
3.3.3 Massive MIMO Antenna Configuration
3.4 Measurement-Based Channel Characterization for SU-Massive MI-MO Wireless Communications On Campus Scenario
3.4.1 Signal Model
3.4.2 Synchronization
3.4.2.1 Coarse Timing Synchronization
3.4.2.2 Primary and Secondary Synchronization Signal
3.4.3 Channel Estimation Procedure
3.4.3.1 LMMSE Algorithms for Channel Estimation
3.4.3.2 Joint Time-Frequency Two-Dimensional IterativeWiener Filtering (IWF) Channel Estimation
3.4.4 Physical Channel Performance
3.4.5 Statistical Result and Discussion
3.4.5.1 Spatially Correlation Channel
3.4.5.2 Channel Capacity
3.5 Research Gaps in Massive MIMO Channel Measurements and Models
3.6 Summary
Chapter4 A Novel Non-Stationary MU-Massive MIMO Channel Models for Out-door Scenarios
4.1 Introduction
4.2 Signal Model and Antenna Configuration/Positioning
4.2.1 3-D AES and Antenna Element’s Positioning
4.2.2 3-D Signal Model
4.2.3 3-D Beam Pattern
4.3 3-D Vertical Received Spatial Correlation
4.3.1 Update UEs Movements
4.4 A 3-D Non-Stationary MU-Massive MIMO Model Using BeamPattern
4.4.1 The 3-D Non-Stationary MU-Massive MIMO Channel Mod-el
4.4.1.1 NLOS Complex Gains
4.4.1.2 LOS Complex Gains
4.4.2 Result and Discussion for 3-D Beam Pattern Multi-PolarizedMassive MIMO
4.4.2.1 Path Models
4.4.2.2 Capacity Correlation
4.4.2.3 ECC and Correlation versus Receiving Antenna Spacing
4.4.2.4 Generation of a Time Varying Channel and Characteristics
4.5 A 3-D Non-Stationary Distributed MU-Massive MIMO ChannelModel
4.5.1 The Non-Stationary Distributed MU-Massive MIMO Model
4.5.2 UE Dropping
4.5.3 Result and Discussion for 3-D Distributed MU-MassiveMIMO
4.5.3.1 Multipath Propagation Channel
4.5.3.2 Channel Capacity on Distributed MU-MassiveMIMO
4.5.3.3 RSRP, RSRQ, RSSI, and SINR Simulation
4.6 Summary
Chapter5 A Novel Stationary MU-Massive MIMO Channel Models for Outdoor-to-Indoor Scenario
5.1 Introduction
5.2 Signal Model, Indoor Testbed with Antenna Configurations
5.2.1 Antenna Pattern
5.2.1.1 Transmit Antenna Array
5.2.1.2 Receive Antenna Array
5.3 Channel Properties
5.3.1 Small Scale Fading
5.3.2 Outdoor-to-Indoor Multipath Delay Properties
5.3.3 Delay of the Clusters
5.3.4 Spatial Correlation and Capacity
5.4 A 3-D Stationary Massive MIMO Model for Outdoor-to-IndoorScenario
5.4.1 Outdoor 3-D Massive MIMO Channel Models
5.4.1.1 NLOS Outdoor Complex Gains
5.4.1.2 LOS Outdoor Complex Gains
5.4.2 Indoor 3-D Massive MIMO Channel Models
5.4.2.1 NLOS Indoor Complex Gains
5.4.2.2 LOS Indoor Complex Gains
5.4.3 Result and Discussion for 3-D Indoor Multi-User MassiveMIMO System
5.4.3.1 Multipath Propagation Channel
5.4.3.2 Channel Properties and Profile
5.4.3.3 Indoor Channel Capacity
5.5 Summary
Chapter6 Conclusions and Future Work
6.1 Summary of Results
6.2 Future Work
Bibliography
Acknowledgements
Publications
【參考文獻】:
期刊論文
[1]Recent advances and future challenges for massive MIMO channel measurements and models[J]. Cheng-Xiang WANG,Shangbin WU,Lu BAI,Xiaohu YOU,Jing WANG,Chih-Lin I. Science China(Information Sciences). 2016(02)
本文編號:3551166
【文章來源】:上海交通大學上海市 211工程院校 985工程院校 教育部直屬院校
【文章頁數】:187 頁
【學位級別】:博士
【文章目錄】:
摘要
Abstract
Abbreviations
Physical Constants
Symbols
Chapter1 Introduction
1.1 Background
1.2 Motivation
1.3 Contributions
1.4 Thesis Organisation
Chapter2 The Traditional Ray Tracing SCModels for Massive MIMO Communications on Campus Scenarios for Outdoor and Outdoor-to-Indoor
2.1 Introduction
2.2 Overview of Theoretical SCM Model for MIMO System
2.2.1 General Parameters
2.2.1.1 Set Environment, Network Layout, and AntennaArray Parameters
2.2.1.2 Large Scale Parameters
2.2.1.3 Small Scale Parameters
2.2.1.4 Generation of 3-D Channel Coefficient
2.2.1.5 Outdoor 3-D Massive MIMO Channel Models
2.2.1.6 Outdoor-to-Indoor 3-D Massive MIMO ChannelModels
2.3 Summary
Chapter3 Outdoor Channel Measurements and Models for SU-Massive MIMO on Different Scenario: Model, Design,Implementation, and Drawbacks
3.1 Background Information on Massive MIMO
3.1.1 MIMO Orthogonal Frequency Division Multiplexing (OFD-M)
3.1.2 Frame Structure
3.1.3 Physical Channels and Signals in Radio Frame
3.1.4 Signal Measuring
3.1.5 Angle of Arrival and Angle of Departure
3.2 Generic Hardware and Processing Partitioning
3.2.1 Software-Defined Radio platform and Basics
3.2.2 Communication System Block Diagram
3.2.3 USRP Module Block Diagram
3.2.3.1 Software Design
3.2.3.2 Hardware Design
3.2.4 Implementation Features
3.2.4.1 Transmitter
3.2.4.2 Receiver
3.2.5 Measurement’s Setup Parameters
3.2.5.1 LAB-View RX Tool
3.2.6 Outdoor Measurement Scenarios
3.3 Scenario of Outdoor SU-Massive MIMO Performance EvaluationModel
3.3.1 Wireless Propagation and Fading Model
3.3.1.1 Large Scale Fading
3.3.2 Path loss Modelling
3.3.3 Massive MIMO Antenna Configuration
3.4 Measurement-Based Channel Characterization for SU-Massive MI-MO Wireless Communications On Campus Scenario
3.4.1 Signal Model
3.4.2 Synchronization
3.4.2.1 Coarse Timing Synchronization
3.4.2.2 Primary and Secondary Synchronization Signal
3.4.3 Channel Estimation Procedure
3.4.3.1 LMMSE Algorithms for Channel Estimation
3.4.3.2 Joint Time-Frequency Two-Dimensional IterativeWiener Filtering (IWF) Channel Estimation
3.4.4 Physical Channel Performance
3.4.5 Statistical Result and Discussion
3.4.5.1 Spatially Correlation Channel
3.4.5.2 Channel Capacity
3.5 Research Gaps in Massive MIMO Channel Measurements and Models
3.6 Summary
Chapter4 A Novel Non-Stationary MU-Massive MIMO Channel Models for Out-door Scenarios
4.1 Introduction
4.2 Signal Model and Antenna Configuration/Positioning
4.2.1 3-D AES and Antenna Element’s Positioning
4.2.2 3-D Signal Model
4.2.3 3-D Beam Pattern
4.3 3-D Vertical Received Spatial Correlation
4.3.1 Update UEs Movements
4.4 A 3-D Non-Stationary MU-Massive MIMO Model Using BeamPattern
4.4.1 The 3-D Non-Stationary MU-Massive MIMO Channel Mod-el
4.4.1.1 NLOS Complex Gains
4.4.1.2 LOS Complex Gains
4.4.2 Result and Discussion for 3-D Beam Pattern Multi-PolarizedMassive MIMO
4.4.2.1 Path Models
4.4.2.2 Capacity Correlation
4.4.2.3 ECC and Correlation versus Receiving Antenna Spacing
4.4.2.4 Generation of a Time Varying Channel and Characteristics
4.5 A 3-D Non-Stationary Distributed MU-Massive MIMO ChannelModel
4.5.1 The Non-Stationary Distributed MU-Massive MIMO Model
4.5.2 UE Dropping
4.5.3 Result and Discussion for 3-D Distributed MU-MassiveMIMO
4.5.3.1 Multipath Propagation Channel
4.5.3.2 Channel Capacity on Distributed MU-MassiveMIMO
4.5.3.3 RSRP, RSRQ, RSSI, and SINR Simulation
4.6 Summary
Chapter5 A Novel Stationary MU-Massive MIMO Channel Models for Outdoor-to-Indoor Scenario
5.1 Introduction
5.2 Signal Model, Indoor Testbed with Antenna Configurations
5.2.1 Antenna Pattern
5.2.1.1 Transmit Antenna Array
5.2.1.2 Receive Antenna Array
5.3 Channel Properties
5.3.1 Small Scale Fading
5.3.2 Outdoor-to-Indoor Multipath Delay Properties
5.3.3 Delay of the Clusters
5.3.4 Spatial Correlation and Capacity
5.4 A 3-D Stationary Massive MIMO Model for Outdoor-to-IndoorScenario
5.4.1 Outdoor 3-D Massive MIMO Channel Models
5.4.1.1 NLOS Outdoor Complex Gains
5.4.1.2 LOS Outdoor Complex Gains
5.4.2 Indoor 3-D Massive MIMO Channel Models
5.4.2.1 NLOS Indoor Complex Gains
5.4.2.2 LOS Indoor Complex Gains
5.4.3 Result and Discussion for 3-D Indoor Multi-User MassiveMIMO System
5.4.3.1 Multipath Propagation Channel
5.4.3.2 Channel Properties and Profile
5.4.3.3 Indoor Channel Capacity
5.5 Summary
Chapter6 Conclusions and Future Work
6.1 Summary of Results
6.2 Future Work
Bibliography
Acknowledgements
Publications
【參考文獻】:
期刊論文
[1]Recent advances and future challenges for massive MIMO channel measurements and models[J]. Cheng-Xiang WANG,Shangbin WU,Lu BAI,Xiaohu YOU,Jing WANG,Chih-Lin I. Science China(Information Sciences). 2016(02)
本文編號:3551166
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/3551166.html