高增益低旁瓣新型集成介質(zhì)天線研究
發(fā)布時間:2021-08-27 01:58
1929年被首次提出的“多棒”的介質(zhì)棒天線(DRA)是“表面波”天線的一種。作為一種電大尺寸的行波天線,DRA通常在很寬的帶寬上具有較高的增益、較高的輻射效率以及較好的極化純度,可應用于諸如地面穿透雷達等領域。傳統(tǒng)的介質(zhì)棒天線主要存在兩個缺點:天線較長;天線副瓣較高。研究能夠以較短的長度實現(xiàn)高增益,并能將旁瓣電平控制在可接受范圍內(nèi)的介質(zhì)棒天線仍然極具挑戰(zhàn)。本文研究了一種新型介質(zhì)棒天線,該天線具有高增益及低旁瓣電平特性,并且可實現(xiàn)線極化和圓極化兩種極化方式。首先,本文提出了由線極化的八木天線和介質(zhì)棒組成的集成天線形式。該天線由印刷八木天線、錐形介質(zhì)殼和周期性介質(zhì)棒組成,介質(zhì)棒采用低損耗的特氟龍材料制作。八木天線嵌入錐形介質(zhì)棒內(nèi),以提高定向增益、輻射效率并壓低旁瓣電平;同時,具有三角形周期表面的介質(zhì)棒被加載到電介質(zhì)殼的末端,以獲得更高的增益和更好的前后比;此外,文中也討論了電介質(zhì)覆蓋層對整體結(jié)構(gòu)輻射性能的影響。最后,設計了一個工作在8.5GHz~9.7 GHz的集成天線,其最大增益為18 dBi,旁瓣電平為-23.37 dB。實驗測量結(jié)果與模擬結(jié)果吻合良好。與傳統(tǒng)的八木天線和長度相同的介質(zhì)...
【文章來源】:中國科學技術大學安徽省 211工程院校 985工程院校
【文章頁數(shù)】:115 頁
【學位級別】:博士
【文章目錄】:
ABSTRACT
摘要
CHAPTER 1 INTRODUCTION
1.1 Introduction
1.2 Dielectric rod antennas
1.3 Current Situation of the Project
1.4 Organization of the Dissertation
CHAPTER 2 THEORY OFDIELECTRIC ROD ANTENNA
2.1 Introduction
2.2 Working Principle
2.3 Mechanism of Radiation Patterns
2.4 The Purpose of the Tapering Structure
2.5 Maximum Gain Point
2.5.1 Electric Field Distribution along the Dielectric Rod
2.5.2 Hassan-Wood Yard Condition for Flat Field Distribution
2.5.3 Design for 100% Excitation Efficiency
2.5.4 Ehrenspeck and Pohler: Yagi- Udawithout Feed Tapered
2.6 The Practical Design
2.7 The Feeding Structure of the Rod
2.8 Measurements
2.9 Results and Discussion
2.10 Gain Enhancement of Microstrip Antennas
2.11 Short Backfire Antenna
2.12 Microstrip Antennas withDielectric Cover
2.13 Microstrip Antennas Gain Improvement with T-lines Analogy
2.14 Gain Enhancement of Microstrip Patch Antennas
2.15 Chapter Summery
CHAPTER 3 A NOVEL INTEGRATED OF YAGI-UDA AND DIELECTRIC ROD ANTENNA WITH LOW SIDE LOBE LEVEL
3.1 Printed Yagi UdaAntenna
3.2 Theoretical Analysis of Integrated of Printed Yagi and Dielectric rod antenna
3.3 Influence of Dielectric Coveronthe EffectivePermittivity
3.4 Input Impedance of Typical Yagi Antenna
3.4.1 Reflection Coefficient and Return Loss of Typical Yagi Antenna
3.5 Simulated Return Loss of Printed Yagi with Dielectric Cover
3.6 Shift of resonance frequency with different substrate of Yagi
3.7 Radiation pattern of a typical Yagi antenna
3.8 Antenna Gain
3.8.1 Gain of Dipole Antenna
3.8.2 Gain of Printed Yagi antenna
3.9 Gain of Printed Yagi antenna with dielectric cover
3.10 Effect of the length of Yagi on directivity of the proposed structure
3.11 Radiation Pattern withTapered Dielectric Cover
3.12 Chapter Summery
CHAPTER 4 ANALYSIS OF PERIODIC SURFACE
4.1 Theory of Dielectric Rod Grating
4.2 Different Shapes of Periodic Surface
4.3 Effect of ratio h/t
4.4 Simulated Radiation pattern of whole structure
4.5 Chapter Summery
CHAPTER 5 DESIGN PARAMETERS AND SIMULATED RESULTS
5.1 Design Parameter of Printed Yagi
5.2 Simulated Return Loss and RadiationPatterns of Yagi with Reflector
5.3 Design parameters of dielectric cover with periodic surface of rod
5.4 Simulated return loss and radiation pattern of IYDRA
5.5 Performance Comparison of IYDRA with conventional SameLength dielectric rod antenna
5.5.1 Radiation pattern comparison of IYDRA and Yagi antenna
5.5.2 Radiation pattern comparison of same length IYDRA and Dielectric rod antenna
5.6 Fabrications steps
5.6.1 Fabrication and fixing of Yagi with its bottom disc reflector
5.6.2 Fabrication and fixing of whole structure of IYDRA
5.7 Measurement
5.7.1 Return loss measurement
5.7.2 Network Analyzer
5.7.3 Radiation pattern measurement
5.8 Chapter Summery
CHAPTER 6 DESIGN EXAMPLE FOR CIRCULAR POLARIZATION
6.0 Introduction
6.1 Helix Antenna
6.1.1 Axial Mode
6.2 Design Parameters for Circular polarization
6.3 Simulated Results for circular polarization
6.4 Comparison of Yagi and Helix feeding
6.4.1 Band width comparison with helix and Yagi feeding
6.4.2 Radiation patterns comparison with the helix and Yagi feeding
6.6 Chapter Summery
CHAPTER 7 A NOVEL EMBEDDED HELIX DIELECTRIC ROD ANTENNAFOR HIGH GAIN AND LOW SIDE LOBE LEVELS
7.1 Introduction
7.2 Theoretical Analysis
7.2.1 First Part
7.2.2 Second Part
7.2.3 Third Part
7.4 Fabrication and Measurement
7.5 Fabrication Steps
7.6 Chapter Summery
CHAPTER 8 CONCLUSION AND FUTURE PROSPECTIVE
8.1 Conclusion
8.2 Future Perspective
REFERENCES
LIST OF PUBLICATIONS
ACKNOWLEDGEMENTS
本文編號:3365418
【文章來源】:中國科學技術大學安徽省 211工程院校 985工程院校
【文章頁數(shù)】:115 頁
【學位級別】:博士
【文章目錄】:
ABSTRACT
摘要
CHAPTER 1 INTRODUCTION
1.1 Introduction
1.2 Dielectric rod antennas
1.3 Current Situation of the Project
1.4 Organization of the Dissertation
CHAPTER 2 THEORY OFDIELECTRIC ROD ANTENNA
2.1 Introduction
2.2 Working Principle
2.3 Mechanism of Radiation Patterns
2.4 The Purpose of the Tapering Structure
2.5 Maximum Gain Point
2.5.1 Electric Field Distribution along the Dielectric Rod
2.5.2 Hassan-Wood Yard Condition for Flat Field Distribution
2.5.3 Design for 100% Excitation Efficiency
2.5.4 Ehrenspeck and Pohler: Yagi- Udawithout Feed Tapered
2.6 The Practical Design
2.7 The Feeding Structure of the Rod
2.8 Measurements
2.9 Results and Discussion
2.10 Gain Enhancement of Microstrip Antennas
2.11 Short Backfire Antenna
2.12 Microstrip Antennas withDielectric Cover
2.13 Microstrip Antennas Gain Improvement with T-lines Analogy
2.14 Gain Enhancement of Microstrip Patch Antennas
2.15 Chapter Summery
CHAPTER 3 A NOVEL INTEGRATED OF YAGI-UDA AND DIELECTRIC ROD ANTENNA WITH LOW SIDE LOBE LEVEL
3.1 Printed Yagi UdaAntenna
3.2 Theoretical Analysis of Integrated of Printed Yagi and Dielectric rod antenna
3.3 Influence of Dielectric Coveronthe EffectivePermittivity
3.4 Input Impedance of Typical Yagi Antenna
3.4.1 Reflection Coefficient and Return Loss of Typical Yagi Antenna
3.5 Simulated Return Loss of Printed Yagi with Dielectric Cover
3.6 Shift of resonance frequency with different substrate of Yagi
3.7 Radiation pattern of a typical Yagi antenna
3.8 Antenna Gain
3.8.1 Gain of Dipole Antenna
3.8.2 Gain of Printed Yagi antenna
3.9 Gain of Printed Yagi antenna with dielectric cover
3.10 Effect of the length of Yagi on directivity of the proposed structure
3.11 Radiation Pattern withTapered Dielectric Cover
3.12 Chapter Summery
CHAPTER 4 ANALYSIS OF PERIODIC SURFACE
4.1 Theory of Dielectric Rod Grating
4.2 Different Shapes of Periodic Surface
4.3 Effect of ratio h/t
4.4 Simulated Radiation pattern of whole structure
4.5 Chapter Summery
CHAPTER 5 DESIGN PARAMETERS AND SIMULATED RESULTS
5.1 Design Parameter of Printed Yagi
5.2 Simulated Return Loss and RadiationPatterns of Yagi with Reflector
5.3 Design parameters of dielectric cover with periodic surface of rod
5.4 Simulated return loss and radiation pattern of IYDRA
5.5 Performance Comparison of IYDRA with conventional SameLength dielectric rod antenna
5.5.1 Radiation pattern comparison of IYDRA and Yagi antenna
5.5.2 Radiation pattern comparison of same length IYDRA and Dielectric rod antenna
5.6 Fabrications steps
5.6.1 Fabrication and fixing of Yagi with its bottom disc reflector
5.6.2 Fabrication and fixing of whole structure of IYDRA
5.7 Measurement
5.7.1 Return loss measurement
5.7.2 Network Analyzer
5.7.3 Radiation pattern measurement
5.8 Chapter Summery
CHAPTER 6 DESIGN EXAMPLE FOR CIRCULAR POLARIZATION
6.0 Introduction
6.1 Helix Antenna
6.1.1 Axial Mode
6.2 Design Parameters for Circular polarization
6.3 Simulated Results for circular polarization
6.4 Comparison of Yagi and Helix feeding
6.4.1 Band width comparison with helix and Yagi feeding
6.4.2 Radiation patterns comparison with the helix and Yagi feeding
6.6 Chapter Summery
CHAPTER 7 A NOVEL EMBEDDED HELIX DIELECTRIC ROD ANTENNAFOR HIGH GAIN AND LOW SIDE LOBE LEVELS
7.1 Introduction
7.2 Theoretical Analysis
7.2.1 First Part
7.2.2 Second Part
7.2.3 Third Part
7.4 Fabrication and Measurement
7.5 Fabrication Steps
7.6 Chapter Summery
CHAPTER 8 CONCLUSION AND FUTURE PROSPECTIVE
8.1 Conclusion
8.2 Future Perspective
REFERENCES
LIST OF PUBLICATIONS
ACKNOWLEDGEMENTS
本文編號:3365418
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/3365418.html
最近更新
教材專著