基于藍(lán)牙信標(biāo)和指紋庫(kù)匹配的室內(nèi)定位算法研究
[Abstract]:Location information, location technology and location service opened a new era of research upsurge, covering many fields such as smart traffic, smart home, smart industry, agriculture, commerce, and smart city. GPS and cellular network positioning technology is widely used for outdoor location services, but due to the non-sight distance and multi-path influence, the signal strength and the positioning accuracy can not reach the indoor positioning requirement, and the power consumption speed is high, and the system cost is high. The present indoor positioning technology is mainly the wireless location technology, which can be seen from the indoor positioning research upsurge in recent years, and the Bluetooth low power consumption 4.0 technology has the advantages of high accuracy, low power consumption, easy deployment, simple system and low cost. At the same time, smart terminal devices such as smart phone, iPhone, iPad and other intelligent terminal devices have developed rapidly, and most of them support the BLE function, and the application of the indoor i Beacon technology is more promoted. It can be said that the Bluetooth positioning technology will become a big pillar of the indoor positioning technology, and the prospect is wide. In this paper, on the basis of the research status of the positioning technology and the location algorithm of the indoor location, the matching and location of the fingerprint library based on the Bluetooth beacon iBeacon is analyzed, and the feasibility and the advantage of the correlation matching and positioning of the iBeacon fingerprint library are analyzed. The main research work of this paper is as follows: (1) The iBeacon beacon arrangement of the typical indoor office environment is studied, and in order to make the RSSI sequence collected at each position in the positioning area to be clearly distinguished, and the actual layout cost and the positioning accuracy requirement are met, And a beacon arrangement scheme of an iBeacon beacon base station is arranged between 3 and 5 meters. (2) The direction, time and personnel interference of the RSSI acquisition in the experimental environment are analyzed and analyzed, and the distribution of the reference point is planned, and the multi-direction multi-direction acquisition scheme is determined. After the fingerprint library is collected, a robust and accurate iBeacon signal fingerprint library is constructed. (3) The correlation coefficient of the unknown point and the reference point is calculated and the correlation coefficient between the unknown point and the reference point is calculated. |? (27) carrying out significance test in the range of (16) to obtain a fingerprint library reference point with high K matching property, and weighting the reference point coordinate with the absolute value of the correlation coefficient as a weighting coefficient to obtain an estimated position. The experimental results show that the correlation coefficient matching position fingerprint library algorithm can increase the probability of the positioning error within 2 meters from 65% to 92%, and compared with the conventional KNN matching and positioning algorithm, it has the advantages of high positioning accuracy, short positioning time and stable algorithm. and (4) designing and implementing the fingerprint database acquisition and real-time positioning of the indoor positioning system based on the iBeacon beacon, And the stored position fingerprint library carries out correlation matching real-time positioning, and then feeds back to the user end to realize the display test of the correlation matching and positioning result.
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN925
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王新;許苗;張京開;劉旺;李為為;王書茂;;溫室作業(yè)機(jī)具室內(nèi)定位方法研究[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2017年01期
2 盛建國(guó);;增強(qiáng)型藍(lán)牙技術(shù)在消防室內(nèi)位置信息業(yè)務(wù)的應(yīng)用[J];信息通信;2017年01期
3 盧選民;院文樂(lè);邱楊;楊帆;;一種改進(jìn)的基于KNN的動(dòng)態(tài)預(yù)測(cè)指紋定位算法[J];計(jì)算機(jī)應(yīng)用研究;2017年07期
4 祁蒙;邱朝陽(yáng);;一種紅外被動(dòng)定位方法的工程實(shí)現(xiàn)[J];計(jì)測(cè)技術(shù);2016年03期
5 胡暉;許浩峰;包偉華;;基于相關(guān)性算法的超聲波回波定位[J];自動(dòng)化儀表;2015年10期
6 石志京;徐鐵峰;劉太君;劉明偉;;基于iBeacon基站的室內(nèi)定位技術(shù)研究[J];移動(dòng)通信;2015年07期
7 傅鶯鶯;田振坤;曹顯兵;;基于線性回歸的協(xié)方差分析模型與檢驗(yàn)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2015年04期
8 ;藍(lán)牙為室內(nèi)定位助一臂之力[J];數(shù)字通信世界;2015年02期
9 莫倩;熊碩;;基于藍(lán)牙4.0的接近度分類室內(nèi)定位算法[J];宇航計(jì)測(cè)技術(shù);2014年06期
10 劉春燕;王堅(jiān);;基于幾何聚類指紋庫(kù)的約束KNN室內(nèi)定位模型[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2014年11期
相關(guān)博士學(xué)位論文 前2條
1 陳麗娜;WLAN位置指紋室內(nèi)定位關(guān)鍵技術(shù)研究[D];華東師范大學(xué);2014年
2 盧少平;基于RFID的AGV定位與導(dǎo)引研究[D];山東大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 蔡敏敏;基于WiFi指紋的室內(nèi)定位系統(tǒng)中采樣和匹配算法研究[D];南京郵電大學(xué);2016年
2 魯希若;WLAN室內(nèi)定位中位置指紋技術(shù)優(yōu)化[D];南京郵電大學(xué);2016年
3 儲(chǔ)興娟;基于WiFi信號(hào)強(qiáng)度的室內(nèi)定位及其應(yīng)用研究[D];江蘇科技大學(xué);2016年
4 王思雪;WiFi位置指紋定位技術(shù)應(yīng)用算法研究[D];中國(guó)地質(zhì)大學(xué)(北京);2016年
5 張劍;基于iBeacon的室內(nèi)定位技術(shù)研究和實(shí)現(xiàn)[D];成都理工大學(xué);2016年
6 韋燕華;基于RSS指紋的室內(nèi)定位方法[D];湘潭大學(xué);2016年
7 申邵輝;基于iBeacon技術(shù)的室內(nèi)定位系統(tǒng)的研究和實(shí)現(xiàn)[D];湖南師范大學(xué);2016年
8 李冕和;基于LFMCW的室內(nèi)高精度定位技術(shù)研究[D];電子科技大學(xué);2016年
9 石恒智;基于藍(lán)牙的可自適應(yīng)指紋室內(nèi)定位方法研究[D];杭州電子科技大學(xué);2016年
10 謝文華;Spearman相關(guān)系數(shù)的變量篩選方法[D];北京工業(yè)大學(xué);2015年
,本文編號(hào):2501125
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2501125.html