相干多普勒測(cè)風(fēng)激光雷達(dá)關(guān)鍵技術(shù)研究
[Abstract]:More and more attention has been paid to the accurate observation of atmospheric wind field in meteorology, military, aerospace and other fields. 1550 nm all-fiber coherent Doppler wind lidar is safe in human eyes, small in size and high in wind measurement accuracy. The advantages of time and spatial resolution are very suitable for real-time wind speed monitoring, high maneuverability and good concealment. In recent years, it has become a hot research topic at home and abroad. In this paper, the key technologies of coherent Doppler wind lidar in 1550nm band are studied. The main contents are as follows: firstly, the application of wind lidar in meteorology, military, aerospace and other fields is analyzed. The research process of lidar at home and abroad is summarized, and the significance of the research is clarified. In the second part, the principle of coherent Doppler wind lidar is analyzed. Firstly, the composition of wind lidar system is introduced, and then the equation of coherent Doppler wind lidar is analyzed according to the principle and system block diagram of coherent Doppler wind lidar. The key parameters of lidar equation, including backscattering coefficient and atmospheric transmittance under standard atmospheric conditions, are simulated. By introducing the principle of coherent detection, the expression of coherent signal is derived, and then the concept of SNR of lidar is given. According to the antenna theorem, the SNR expression is derived by using backward propagating local oscillator light. By analyzing the expression of signal-to-noise ratio (SNR), the key parameters affecting SNR are given: heterodyne efficiency and antenna efficiency expression. In the third part, the factors affecting the system error of coherent Doppler wind lidar are analyzed, including laser performance, spectrum resolution and the influence of signal-to-noise ratio (SNR) on the accuracy of frequency measurement. Through the analysis of the system error, the parameters and detection distance of the system are determined. In the fourth chapter, the frequency extraction algorithm, scanning system and the key technology of telescope design are analyzed in detail. For the frequency extraction algorithm, through the analysis of pulse pair algorithm, improved pulse pair algorithm, zero compensation FFT and maximum likelihood estimation, it is concluded that the zero compensation FFT algorithm is suitable for real time wind speed measurement of coherent Doppler wind lidar. Through simulation, the specific parameters of the scanning system are analyzed, and the specific parameters of the scanning system are determined. By using the conclusion of antenna efficiency and signal-to-noise ratio (SNR) simulation, the requirements of the telescope are analyzed, and a transmission telescope is designed to meet the requirements. In chapter 5, the experimental verification and field test of coherent Doppler wind lidar are carried out. Through the temporary construction system of the test-bed, the feasibility of lidar principle is verified, and the velocity measurement of coherent Doppler wind lidar is calibrated by rotating speed motor. After the functional test of the test-bed is completed, the external field test is carried out. The function of wind measurement is basically realized. The sixth chapter summarizes the research work and points out the shortcomings of the work. It is pointed out that the next work needs to be completed.
【學(xué)位授予單位】:中國(guó)航天科技集團(tuán)公司第一研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN958.98
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉軍華;高新江;周勛;;短波紅外InGaAs焦平面探測(cè)器的技術(shù)進(jìn)展[J];半導(dǎo)體光電;2015年05期
2 刁偉峰;劉繼橋;竹孝鵬;劉源;張?chǎng)?陳衛(wèi)標(biāo);;全光纖相干多普勒激光雷達(dá)非線性最小二乘風(fēng)速反演方法及實(shí)驗(yàn)研究[J];中國(guó)激光;2015年09期
3 劉兵;陶煒;柯尊貴;馮力天;袁菲;李曉峰;;相干激光雷達(dá)平衡式相干探測(cè)技術(shù)研究[J];激光技術(shù);2015年01期
4 徐世龍;胡以華;郭力仁;;飛機(jī)尾渦相干激光探測(cè)系統(tǒng)設(shè)計(jì)與性能分析[J];激光與光電子學(xué)進(jìn)展;2014年08期
5 步志超;郭磐;陳思穎;張寅超;陳和;陳勝哲;葛憲瑩;;相干測(cè)風(fēng)激光雷達(dá)望遠(yuǎn)鏡孔徑及截?cái)嘁蜃拥膬?yōu)化分析[J];紅外與激光工程;2014年03期
6 楊昌盛;徐善輝;李燦;莫樹(shù)培;馮洲明;姜中宏;楊中民;;1.5μm波段連續(xù)單頻光纖激光器的研究進(jìn)展[J];中國(guó)科學(xué):化學(xué);2013年11期
7 王然;高春清;;1.6μm波段單頻激光器技術(shù)研究進(jìn)展[J];激光與光電子學(xué)進(jìn)展;2013年08期
8 潘靜巖;鄔雙陽(yáng);劉果;董光焰;張鵬飛;陳靜;;相干激光測(cè)風(fēng)雷達(dá)風(fēng)場(chǎng)測(cè)量技術(shù)[J];紅外與激光工程;2013年07期
9 張衛(wèi)鋒;張若嵐;趙魯生;胡銳;史衍麗;;InGaAs短波紅外探測(cè)器研究進(jìn)展[J];紅外技術(shù);2012年06期
10 竹孝鵬;劉繼橋;刁偉峰;畢德倉(cāng);周軍;陳衛(wèi)標(biāo);;相干多普勒測(cè)風(fēng)激光雷達(dá)研究[J];紅外;2012年02期
相關(guān)會(huì)議論文 前1條
1 陳楠;胡明寶;徐芬;高闖;;利用風(fēng)廓線雷達(dá)資料研究大氣湍流耗散率[A];S9 雷達(dá)探測(cè)技術(shù)研究與應(yīng)用[C];2012年
相關(guān)博士學(xué)位論文 前3條
1 賈曉東;1.55μm相干測(cè)風(fēng)激光雷達(dá)樣機(jī)的研制[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
2 李彥超;2μm激光測(cè)風(fēng)雷達(dá)外差探測(cè)方法與關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2012年
3 劉俊凱;飛機(jī)尾流的雷達(dá)檢測(cè)與跟蹤技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前7條
1 胡琦;基于多普勒氣象雷達(dá)的風(fēng)切變預(yù)測(cè)研究[D];上海交通大學(xué);2012年
2 安軍;航母尾流模擬及艦載機(jī)著艦控制的初步研究[D];華中科技大學(xué);2012年
3 徐向博;大氣湍流對(duì)激光傳輸?shù)挠绊懷芯縖D];長(zhǎng)春理工大學(xué);2011年
4 王麗枝;相干光通信外差探測(cè)技術(shù)研究[D];西安電子科技大學(xué);2011年
5 張德遠(yuǎn);基于雙邊緣技術(shù)的多普勒測(cè)風(fēng)激光雷達(dá)系統(tǒng)的設(shè)計(jì)[D];電子科技大學(xué);2008年
6 馮立坤;2μm相干激光測(cè)風(fēng)雷達(dá)光學(xué)天線特性分析與設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2008年
7 張健;2μm相干激光測(cè)風(fēng)雷達(dá)信號(hào)提取與仿真[D];哈爾濱工業(yè)大學(xué);2007年
,本文編號(hào):2493942
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2493942.html