基于紋理特性與視覺(jué)關(guān)注度的HEVC優(yōu)化研究
[Abstract]:With the development of the network and the popularization of the video application, the demand for the video quality of the user is higher and higher, and the high-quality video needs a large amount of data to describe the detail of the picture, resulting in a sharp increase in the amount of video data. High-performance Video Coding (HEVC) is a new-generation coding standard for high-resolution video. Its core goal is to double the video compression efficiency on the basis of the H.264/ AVC High Profile. But the compression efficiency is improved, higher calculation complexity and long coding time are also brought, and the popularization and application of the HEVC are seriously affected. In video, the texture of an object is represented by the arrangement and variation of the local area pixels, usually in a slow or periodic manner, with a certain regularity. HEVC is used to encode an image by a coding unit (CU), and the texture simple area is divided into a large-size CU with a low depth level, and the texture complex area is divided into a small-size CU with a high depth level, and the depth of the area CU with similar texture is similar. However, the calculation complexity of the CU is high and becomes one of the main factors that restrict the performance of the HEVC. Therefore, considering the texture characteristics of the video in the HEVC, the division depth of the CU can be predicted, the coding calculation complexity is reduced, and the coding time is effectively reduced. On the other hand, the eye is the final receptor of various video signals, and the video quality can also be said to be the subjective quality of the human eye's perception of the video. The human vision system is not equally concerned with all the areas in the video, and can effectively remove the visual redundancy and improve the compression performance according to the different adjustment code rate resource allocation of the attention of the visual on the image area in the video coding. Therefore, the HEVC optimization research based on the texture characteristic and the visual attention can effectively improve the HEVC coding performance, and has important theoretical significance and wide application value. First, on the basis of in-depth study of the principle of CU division, a fast algorithm of CU based on Canny operator is proposed, which makes the CU enter the sub-division in advance, reduce the coding complexity and speed up the coding process. Then the visual attention model is established according to the perception characteristic of the human eye, the attention of the current maximum coding unit (LCU) is calculated, the code rate resource allocation of the different attention regions is adjusted, the adaptive coding compression is realized, and the overall compression ratio is improved. The main research contents of this paper include the following three aspects: (1) study the initial depth prediction algorithm of the CU, and optimize the CU division. Firstly, the relationship between the depth of the CU division depth and its neighborhood and the same position of the reference frame is studied, the mathematical relation between the initial depth of the CU and the texture distribution is derived, and then the texture region of the key frame is divided by using the advantages of high edge positioning accuracy and good continuity of the Canny division operator. And finally, the initial depth of the CU is predicted according to the texture distribution condition, a recursive process of the CU is simplified, the coding complexity is reduced, and the coding process is accelerated. And (2) simulating the selective attention mechanism of the human vision system to establish the attention model. According to the visual perception characteristics, a visual attention model is established by introducing a motility factor, a texture complexity factor, a contrast factor and a brightness factor. In order to guarantee the coding efficiency, the motion factor is calculated by the gray-scale projection method with low computational complexity and strong robustness, the texture complexity factor is calculated based on the brightness distribution, the contrast factor is calculated by using the four-neighbor algorithm of the pixel, and the brightness factor is calculated by adopting the four-neighbor algorithm of the coding unit. And (3) adjusting the code rate resource allocation according to the different degree of the CU, so as to realize the self-adaptive coding compression. according to the characteristic that the human eye is more concerned with the structural distortion and the non-pixel point distortion, the structure similarity distortion optimization algorithm constructed by the high-degree-of-interest LCU is used instead of the non-traditional error sum-of-square algorithm, and the Lagrange factor is corrected for the low-degree-of-attention LCU by the degree of attention, The coarse quantization of the low-degree-of-attention area is realized, and the effect of improving the compression ratio and reducing the code rate is achieved.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN919.81
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 榮倩倩;楊靜;;基于HEVC的LCU層碼率控制算法改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2016年05期
2 袁威;高躍清;吳金亮;;基于灰度投影和塊匹配的無(wú)人機(jī)視頻穩(wěn)像方法[J];無(wú)線電工程;2016年02期
3 王茜;蘇荔;黃慶明;;融合視覺(jué)感知特性的視頻編碼率失真優(yōu)化[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2015年10期
4 樊春曉;李甫;石光明;牛毅;焦丹丹;;一種HEVC幀內(nèi)預(yù)測(cè)編碼CU結(jié)構(gòu)快速選擇算法[J];光電子·激光;2015年09期
5 陶耀東;王鵬博;高春;于波;;一種HEVC編碼單元快速劃分決策算法[J];小型微型計(jì)算機(jī)系統(tǒng);2015年08期
6 張峻;董蘭芳;余家奎;;高效率視頻編碼快速幀內(nèi)預(yù)測(cè)算法[J];計(jì)算機(jī)應(yīng)用;2015年08期
7 費(fèi)馬燕;彭宗舉;李持航;陳芬;郁梅;蔣剛毅;;融合視覺(jué)感知特性的HEVC率失真優(yōu)化[J];中國(guó)圖象圖形學(xué)報(bào);2015年07期
8 金智鵬;代紹慶;王利華;;HEVC幀內(nèi)編碼單元快速劃分算法[J];南京郵電大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期
9 朱天之;郁梅;蔣剛毅;陳芬;邵楓;彭宗舉;;基于SSIM的HEVC幀內(nèi)編碼率失真優(yōu)化[J];光電子·激光;2014年12期
10 齊美彬;陳秀麗;楊艷芳;蔣建國(guó);金玉龍;張俊杰;;高效率視頻編碼幀內(nèi)預(yù)測(cè)編碼單元?jiǎng)澐挚焖偎惴╗J];電子與信息學(xué)報(bào);2014年07期
相關(guān)博士學(xué)位論文 前7條
1 王洪濤;面向視頻編碼標(biāo)準(zhǔn)應(yīng)用的幀間預(yù)測(cè)技術(shù)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
2 石中博;基于內(nèi)容分析的圖像視頻編碼研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
3 孫樂(lè);基于HVS(Human Visual System)的H.264/AVC碼率控制算法研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2014年
4 吳金建;基于人類視覺(jué)系統(tǒng)的圖像信息感知和圖像質(zhì)量評(píng)價(jià)[D];西安電子科技大學(xué);2014年
5 張蕾;感知視頻編碼技術(shù)研究[D];西南交通大學(xué);2013年
6 李斌;面向高性能視頻編碼標(biāo)準(zhǔn)的率失真優(yōu)化技術(shù)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
7 張瑞;基于視覺(jué)選擇性注意模型的圖像質(zhì)量評(píng)價(jià)和視頻編碼技術(shù)研究[D];上海交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 李昌彬;HEVC框架下基于視覺(jué)顯著性的編碼優(yōu)化算法研究[D];西南交通大學(xué);2016年
2 郭少歌;基于HEVC的監(jiān)控視頻編碼碼率控制研究[D];北京理工大學(xué);2016年
3 于洋;基于人眼視覺(jué)特性的率失真優(yōu)化技術(shù)研究[D];北京郵電大學(xué);2015年
4 郝田田;H.265運(yùn)動(dòng)估計(jì)的研究與實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年
5 劉瑤;HEVC像素梯度幀內(nèi)預(yù)測(cè)算法設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
6 李煒;視頻動(dòng)態(tài)紋理特征提取與分割技術(shù)研究與實(shí)現(xiàn)[D];西南交通大學(xué);2014年
7 王貴彬;基于Canny算子與形態(tài)學(xué)融合的邊緣檢測(cè)算法[D];哈爾濱理工大學(xué);2014年
8 李金洋;HEVC中CU分割及幀內(nèi)預(yù)測(cè)模式快速算法的研究與應(yīng)用[D];北京郵電大學(xué);2014年
9 姬瑞旭;HEVC幀內(nèi)模式?jīng)Q策和CU劃分快速算法[D];西安電子科技大學(xué);2014年
10 陳明書(shū);混合視頻編碼框架下的變換編碼技術(shù)研究[D];北京郵電大學(xué);2014年
,本文編號(hào):2489912
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2489912.html