天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 信息工程論文 >

基于紋理特性與視覺(jué)關(guān)注度的HEVC優(yōu)化研究

發(fā)布時(shí)間:2019-05-31 18:00
【摘要】:隨著網(wǎng)絡(luò)的發(fā)展與視頻應(yīng)用的普及,用戶對(duì)視頻質(zhì)量的要求越來(lái)越高,高質(zhì)量的視頻需要大量數(shù)據(jù)描述畫(huà)面細(xì)節(jié),導(dǎo)致視頻數(shù)據(jù)量激增。高性能視頻編碼(High Efficiency Video Coding,HEVC)是面向高分辨率視頻的新一代編碼標(biāo)準(zhǔn),其核心目標(biāo)是在H.264/AVC High Profile的基礎(chǔ)上,將視頻壓縮效率提高一倍。但壓縮效率提高的同時(shí)也帶來(lái)了較高的計(jì)算復(fù)雜度與較長(zhǎng)的編碼時(shí)間,嚴(yán)重影響了HEVC的推廣與應(yīng)用。在視頻中,物體的紋理通過(guò)局部區(qū)域像素的排列與變化來(lái)表現(xiàn),通常呈緩慢或周期性變化,具有一定的規(guī)律性。HEVC以編碼單元(Coding Unit,CU)為基本單位對(duì)圖像進(jìn)行編碼,將紋理簡(jiǎn)單區(qū)域劃分為低深度級(jí)別的大尺寸CU,將紋理復(fù)雜區(qū)域劃分為高深度級(jí)別的小尺寸CU,對(duì)紋理相似的區(qū)域CU深度劃分相近。但CU劃分算法計(jì)算復(fù)雜度高,成為制約HEVC性能的主要因素之一。所以,在HEVC中考慮視頻的紋理特性可以預(yù)測(cè)CU劃分深度,降低編碼計(jì)算復(fù)雜度,有效減少編碼時(shí)間。另一方面,眼睛是各種視頻信號(hào)的最終受體,視頻質(zhì)量也可以說(shuō)是人眼對(duì)視頻感知的主觀質(zhì)量。人類視覺(jué)系統(tǒng)并非平等地關(guān)注視頻中所有區(qū)域,在視頻編碼中根據(jù)視覺(jué)對(duì)圖像區(qū)域關(guān)注度的不同調(diào)整碼率資源分配,可有效去除視覺(jué)冗余,提升壓縮性能。因此,基于紋理特性與視覺(jué)關(guān)注度的HEVC優(yōu)化研究能夠有效提高HEVC編碼性能,具有重要的理論意義和廣闊的應(yīng)用價(jià)值。首先在深入研究CU劃分原理的基礎(chǔ)上,提出一種基于Canny算子的CU快速劃分算法,使CU提前進(jìn)入子劃分,降低編碼復(fù)雜度,加快編碼過(guò)程。然后根據(jù)人眼感知特性建立視覺(jué)關(guān)注度模型,計(jì)算當(dāng)前最大編碼單元(Largest Coding Unit,LCU)關(guān)注度,調(diào)節(jié)不同關(guān)注度區(qū)域的碼率資源分配,實(shí)現(xiàn)自適應(yīng)編碼壓縮,提高整體壓縮比。本文的主要研究?jī)?nèi)容包括以下三個(gè)方面:(1)研究CU初始深度預(yù)測(cè)算法,優(yōu)化CU劃分。首先研究CU劃分深度與其鄰域及參考幀相同位置CU深度的相關(guān)性,推導(dǎo)出CU初始深度與紋理分布的數(shù)學(xué)關(guān)系;然后利用Canny分割算子邊緣定位精度高、連續(xù)性良好等優(yōu)點(diǎn),分割關(guān)鍵幀的紋理區(qū)域,并判斷紋理在當(dāng)前CU與鄰域中分布關(guān)系;最后根據(jù)紋理分布情況預(yù)測(cè)CU初始深度,簡(jiǎn)化CU劃分遞歸過(guò)程,降低編碼復(fù)雜度,加快編碼過(guò)程。(2)模擬人類視覺(jué)系統(tǒng)的選擇性注意機(jī)制建立關(guān)注度模型。根據(jù)視覺(jué)感知特性引入運(yùn)動(dòng)性因子、紋理復(fù)雜度因子、對(duì)比度因子與亮度因子建立視覺(jué)關(guān)注度模型。為保證編碼效率,采用計(jì)算復(fù)雜度低、魯棒性強(qiáng)的灰度投影法計(jì)算運(yùn)動(dòng)性因子,基于亮度分布情況計(jì)算紋理復(fù)雜度因子,采用像素四近鄰算法計(jì)算對(duì)比度因子,采用編碼單元四近鄰算法計(jì)算亮度因子。(3)根據(jù)CU關(guān)注度的不同,調(diào)整碼率資源分配,實(shí)現(xiàn)自適應(yīng)編碼壓縮。根據(jù)人眼更加關(guān)注結(jié)構(gòu)性失真而非像素點(diǎn)失真的特點(diǎn),對(duì)高關(guān)注度LCU使用構(gòu)建的結(jié)構(gòu)相似性失真優(yōu)化算法而非傳統(tǒng)的誤差平方和算法,對(duì)低關(guān)注度LCU利用關(guān)注度修正拉格朗日因子,實(shí)現(xiàn)對(duì)低關(guān)注度區(qū)域粗量化,達(dá)到提高壓縮比,減少碼率的效果。
[Abstract]:With the development of the network and the popularization of the video application, the demand for the video quality of the user is higher and higher, and the high-quality video needs a large amount of data to describe the detail of the picture, resulting in a sharp increase in the amount of video data. High-performance Video Coding (HEVC) is a new-generation coding standard for high-resolution video. Its core goal is to double the video compression efficiency on the basis of the H.264/ AVC High Profile. But the compression efficiency is improved, higher calculation complexity and long coding time are also brought, and the popularization and application of the HEVC are seriously affected. In video, the texture of an object is represented by the arrangement and variation of the local area pixels, usually in a slow or periodic manner, with a certain regularity. HEVC is used to encode an image by a coding unit (CU), and the texture simple area is divided into a large-size CU with a low depth level, and the texture complex area is divided into a small-size CU with a high depth level, and the depth of the area CU with similar texture is similar. However, the calculation complexity of the CU is high and becomes one of the main factors that restrict the performance of the HEVC. Therefore, considering the texture characteristics of the video in the HEVC, the division depth of the CU can be predicted, the coding calculation complexity is reduced, and the coding time is effectively reduced. On the other hand, the eye is the final receptor of various video signals, and the video quality can also be said to be the subjective quality of the human eye's perception of the video. The human vision system is not equally concerned with all the areas in the video, and can effectively remove the visual redundancy and improve the compression performance according to the different adjustment code rate resource allocation of the attention of the visual on the image area in the video coding. Therefore, the HEVC optimization research based on the texture characteristic and the visual attention can effectively improve the HEVC coding performance, and has important theoretical significance and wide application value. First, on the basis of in-depth study of the principle of CU division, a fast algorithm of CU based on Canny operator is proposed, which makes the CU enter the sub-division in advance, reduce the coding complexity and speed up the coding process. Then the visual attention model is established according to the perception characteristic of the human eye, the attention of the current maximum coding unit (LCU) is calculated, the code rate resource allocation of the different attention regions is adjusted, the adaptive coding compression is realized, and the overall compression ratio is improved. The main research contents of this paper include the following three aspects: (1) study the initial depth prediction algorithm of the CU, and optimize the CU division. Firstly, the relationship between the depth of the CU division depth and its neighborhood and the same position of the reference frame is studied, the mathematical relation between the initial depth of the CU and the texture distribution is derived, and then the texture region of the key frame is divided by using the advantages of high edge positioning accuracy and good continuity of the Canny division operator. And finally, the initial depth of the CU is predicted according to the texture distribution condition, a recursive process of the CU is simplified, the coding complexity is reduced, and the coding process is accelerated. And (2) simulating the selective attention mechanism of the human vision system to establish the attention model. According to the visual perception characteristics, a visual attention model is established by introducing a motility factor, a texture complexity factor, a contrast factor and a brightness factor. In order to guarantee the coding efficiency, the motion factor is calculated by the gray-scale projection method with low computational complexity and strong robustness, the texture complexity factor is calculated based on the brightness distribution, the contrast factor is calculated by using the four-neighbor algorithm of the pixel, and the brightness factor is calculated by adopting the four-neighbor algorithm of the coding unit. And (3) adjusting the code rate resource allocation according to the different degree of the CU, so as to realize the self-adaptive coding compression. according to the characteristic that the human eye is more concerned with the structural distortion and the non-pixel point distortion, the structure similarity distortion optimization algorithm constructed by the high-degree-of-interest LCU is used instead of the non-traditional error sum-of-square algorithm, and the Lagrange factor is corrected for the low-degree-of-attention LCU by the degree of attention, The coarse quantization of the low-degree-of-attention area is realized, and the effect of improving the compression ratio and reducing the code rate is achieved.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN919.81

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 榮倩倩;楊靜;;基于HEVC的LCU層碼率控制算法改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2016年05期

2 袁威;高躍清;吳金亮;;基于灰度投影和塊匹配的無(wú)人機(jī)視頻穩(wěn)像方法[J];無(wú)線電工程;2016年02期

3 王茜;蘇荔;黃慶明;;融合視覺(jué)感知特性的視頻編碼率失真優(yōu)化[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2015年10期

4 樊春曉;李甫;石光明;牛毅;焦丹丹;;一種HEVC幀內(nèi)預(yù)測(cè)編碼CU結(jié)構(gòu)快速選擇算法[J];光電子·激光;2015年09期

5 陶耀東;王鵬博;高春;于波;;一種HEVC編碼單元快速劃分決策算法[J];小型微型計(jì)算機(jī)系統(tǒng);2015年08期

6 張峻;董蘭芳;余家奎;;高效率視頻編碼快速幀內(nèi)預(yù)測(cè)算法[J];計(jì)算機(jī)應(yīng)用;2015年08期

7 費(fèi)馬燕;彭宗舉;李持航;陳芬;郁梅;蔣剛毅;;融合視覺(jué)感知特性的HEVC率失真優(yōu)化[J];中國(guó)圖象圖形學(xué)報(bào);2015年07期

8 金智鵬;代紹慶;王利華;;HEVC幀內(nèi)編碼單元快速劃分算法[J];南京郵電大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期

9 朱天之;郁梅;蔣剛毅;陳芬;邵楓;彭宗舉;;基于SSIM的HEVC幀內(nèi)編碼率失真優(yōu)化[J];光電子·激光;2014年12期

10 齊美彬;陳秀麗;楊艷芳;蔣建國(guó);金玉龍;張俊杰;;高效率視頻編碼幀內(nèi)預(yù)測(cè)編碼單元?jiǎng)澐挚焖偎惴╗J];電子與信息學(xué)報(bào);2014年07期

相關(guān)博士學(xué)位論文 前7條

1 王洪濤;面向視頻編碼標(biāo)準(zhǔn)應(yīng)用的幀間預(yù)測(cè)技術(shù)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年

2 石中博;基于內(nèi)容分析的圖像視頻編碼研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年

3 孫樂(lè);基于HVS(Human Visual System)的H.264/AVC碼率控制算法研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2014年

4 吳金建;基于人類視覺(jué)系統(tǒng)的圖像信息感知和圖像質(zhì)量評(píng)價(jià)[D];西安電子科技大學(xué);2014年

5 張蕾;感知視頻編碼技術(shù)研究[D];西南交通大學(xué);2013年

6 李斌;面向高性能視頻編碼標(biāo)準(zhǔn)的率失真優(yōu)化技術(shù)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年

7 張瑞;基于視覺(jué)選擇性注意模型的圖像質(zhì)量評(píng)價(jià)和視頻編碼技術(shù)研究[D];上海交通大學(xué);2009年

相關(guān)碩士學(xué)位論文 前10條

1 李昌彬;HEVC框架下基于視覺(jué)顯著性的編碼優(yōu)化算法研究[D];西南交通大學(xué);2016年

2 郭少歌;基于HEVC的監(jiān)控視頻編碼碼率控制研究[D];北京理工大學(xué);2016年

3 于洋;基于人眼視覺(jué)特性的率失真優(yōu)化技術(shù)研究[D];北京郵電大學(xué);2015年

4 郝田田;H.265運(yùn)動(dòng)估計(jì)的研究與實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年

5 劉瑤;HEVC像素梯度幀內(nèi)預(yù)測(cè)算法設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年

6 李煒;視頻動(dòng)態(tài)紋理特征提取與分割技術(shù)研究與實(shí)現(xiàn)[D];西南交通大學(xué);2014年

7 王貴彬;基于Canny算子與形態(tài)學(xué)融合的邊緣檢測(cè)算法[D];哈爾濱理工大學(xué);2014年

8 李金洋;HEVC中CU分割及幀內(nèi)預(yù)測(cè)模式快速算法的研究與應(yīng)用[D];北京郵電大學(xué);2014年

9 姬瑞旭;HEVC幀內(nèi)模式?jīng)Q策和CU劃分快速算法[D];西安電子科技大學(xué);2014年

10 陳明書(shū);混合視頻編碼框架下的變換編碼技術(shù)研究[D];北京郵電大學(xué);2014年



本文編號(hào):2489912

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2489912.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶749a4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com