基于拉曼激光雷達的全天時大氣水汽含量探測與分析
[Abstract]:Atmospheric water vapor is an important atmospheric meteorological parameter. It is one of the most active gas components in the atmosphere. Water vapor is an indispensable factor in the process of cloud-forming precipitation and plays an important role in a series of atmospheric processes such as global hydrological cycle meteorology and atmospheric dynamics. These important effects of water vapor are closely related to water vapor content and its spatio-temporal distribution. In view of the rapid spatio-temporal variation of water vapor, the high-precision atmospheric water vapor detection during the whole day is of great scientific significance and application value for the study of precipitation, the diffusion of atmospheric pollutants, the formation and dissipation of haze and haze, and so on. In view of the interference of strong solar background light on weak water vapor Raman scattering signal in all-day detection, the simulation of the existing Raman lidar system is carried out firstly, and the field of view angle of reception is discussed in detail. The influence of filter bandwidth and other main parameters on all-day detection performance is studied. The optimized design and experimental verification of all-day Lidar system for atmospheric water vapor detection are completed. According to the characteristics of Lidar echo signal and noise, a high precision filtering method based on wavelet de-noising for daytime solar background light is proposed. The decomposition layer number and wavelet basis function are discussed. The influence of threshold function and threshold selection on de-noising results is studied. Through a lot of data analysis and comparison of de-noising evaluation function, the wavelet-based sym6-8, decomposition layer is used as 5 layers, and the improved threshold function and improved universal threshold method are adopted. Can achieve a better de-noising effect. All-day lidar detection experiments and data inversion are carried out. The results show that the range of atmospheric water vapor detection can be increased from 1.5-2km to more than 3km in the daytime. The validity of wavelet threshold de-noising algorithm and the feasibility of all-day water vapor detection are verified. From November 2013 to July 2016, a long-term statistical analysis of atmospheric water vapor content in Xi'an region was carried out based on the data from Lidar remote Sensing Center and Meteorological Station of Xi'an University of Technology. The variation and occupation ratio of water vapor content in different height layers are obtained. The temporal and spatial variation characteristics and seasonal variation characteristics of water vapor content are analyzed, as well as the change trend of water vapor content before and after special weather processes such as rainfall and snow. The correlation between water vapor content and meteorological factors is discussed. The results show that water vapor content is positively correlated with surface temperature and water vapor pressure, negatively correlated with atmospheric pressure, and strongly correlated with precipitation, precipitation days and precipitation efficiency. It provides a powerful basis for the use of lidar detection to guide agricultural production and artificial precipitation.
【學位授予單位】:西安理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P412.25;TN958.98
【參考文獻】
相關(guān)期刊論文 前10條
1 呂立蕾;;多光譜激光雷達小波去噪效果評價體系[J];海洋測繪;2016年04期
2 于杰;車慧正;陳權(quán)亮;朱君;桂柯;鄭宇;;2010—2012年我國西北地區(qū)沙塵個例氣溶膠特征分析[J];氣象與環(huán)境科學;2016年02期
3 段慧;張丹;范力;楊洪霞;;西充河自動監(jiān)測斷面表層溶解氧季節(jié)變化及影響分析[J];四川環(huán)境;2015年05期
4 楊瑞鴻;王研峰;黃武斌;鄭泳宜;;半干旱地區(qū)大氣水汽含量反演分析[J];現(xiàn)代農(nóng)業(yè)科技;2015年01期
5 趙一鳴;李艷華;商雅楠;李靜;于勇;李涼海;;激光雷達的應(yīng)用及發(fā)展趨勢[J];遙測遙控;2014年05期
6 郭艷君;丁一匯;;1958~2005年中國高空大氣比濕變化[J];大氣科學;2014年01期
7 韓潔;李建芳;;2011年陜西省強秋淋天氣分析[J];陜西氣象;2012年06期
8 張秉祥;韓軍彩;陳靜;劉萍;;華北地區(qū)空中水汽含量與降水量的關(guān)系[J];干旱氣象;2012年02期
9 張永濤;焦振峰;馬鑫鑫;侯俊嶺;;漯河單站氣象要素與降水概率的初步研究[J];氣象與環(huán)境科學;2011年S1期
10 趙松;江漢紅;張朝亮;柯澤賢;;基于改進小波閾值函數(shù)的雷達信號去噪[J];兵工自動化;2011年07期
相關(guān)會議論文 前1條
1 劉艷華;李鐵林;郭獻林;馬鑫鑫;;河南省空中水汽資源的來源、分布及收支[A];第十五屆全國云降水與人工影響天氣科學會議論文集(Ⅰ)[C];2008年
相關(guān)博士學位論文 前1條
1 李霞;西北半干旱區(qū)大氣可降水量和氣溶膠光學特性的反演與分析[D];蘭州大學;2012年
相關(guān)碩士學位論文 前8條
1 王斌;寒冷地區(qū)既有居住建筑外窗節(jié)能改造研究[D];長安大學;2013年
2 韓軍彩;華北地區(qū)空中水汽含量的演變特征[D];南京信息工程大學;2011年
3 袁紅梅;基于小波變換的圖像去噪算法與實現(xiàn)[D];上海交通大學;2008年
4 宛霞;用衛(wèi)星資料和常規(guī)資料聯(lián)合估算水汽含量的研究[D];蘭州大學;2007年
5 姚勝利;地震信號的小波去噪方法研究[D];中南大學;2007年
6 張旭蓮;小波變換及其在地震資料去噪中的應(yīng)用[D];西安科技大學;2006年
7 翟清斌;利用地基GPS遙感大氣水汽含量的研究[D];清華大學;2005年
8 樊春玲;低頻振動下機械故障診斷技術(shù)的研究[D];燕山大學;2001年
,本文編號:2465448
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2465448.html