基于異常檢測與雙層篩選機(jī)制的SAR圖像艦船檢測方法
發(fā)布時間:2019-04-09 07:27
【摘要】:針對現(xiàn)有合成孔徑雷達(dá)(SAR)圖像艦船目標(biāo)智能檢測算法中篩選誤差較大的問題,提出一種新的SAR圖像艦船目標(biāo)檢測方法。該方法將高光譜圖像異常檢測理論引入到SAR圖像艦船目標(biāo)檢測處理中。通過圖像轉(zhuǎn)換將SAR圖像轉(zhuǎn)換成高光譜類型圖像,采用異常檢測算法實現(xiàn)艦船目標(biāo)的檢測預(yù)處理,得到感興趣區(qū)域二值圖。運用雙層篩選機(jī)制,實現(xiàn)背景雜波的準(zhǔn)確建模和艦船目標(biāo)的快速檢測。實驗結(jié)果表明,該算法能夠降低篩選誤差,有效地消除虛假目標(biāo)和旁瓣干擾,具有更好的結(jié)構(gòu)保真度。
[Abstract]:A new method of ship target detection based on synthetic Aperture Radar (SAR) image is proposed to solve the problem of large filtering error in the existing algorithms of ship target intelligent detection in synthetic aperture radar (SAR) images. In this method, the theory of hyperspectral anomaly detection is introduced into the ship target detection of SAR image. The SAR image is converted into hyperspectral image by image conversion, and the detection preprocessing of ship target is realized by using anomaly detection algorithm, and the binary map of the region of interest is obtained. The background clutter modeling and the fast detection of ship targets are realized by using the double-layer filtering mechanism. The experimental results show that the proposed algorithm can reduce the filter error, effectively eliminate false targets and sidelobe interference, and has better structure fidelity.
【作者單位】: 國防科學(xué)技術(shù)大學(xué)電子科學(xué)與工程學(xué)院;
【基金】:國家自然科學(xué)基金(61171135)
【分類號】:TN957.52
[Abstract]:A new method of ship target detection based on synthetic Aperture Radar (SAR) image is proposed to solve the problem of large filtering error in the existing algorithms of ship target intelligent detection in synthetic aperture radar (SAR) images. In this method, the theory of hyperspectral anomaly detection is introduced into the ship target detection of SAR image. The SAR image is converted into hyperspectral image by image conversion, and the detection preprocessing of ship target is realized by using anomaly detection algorithm, and the binary map of the region of interest is obtained. The background clutter modeling and the fast detection of ship targets are realized by using the double-layer filtering mechanism. The experimental results show that the proposed algorithm can reduce the filter error, effectively eliminate false targets and sidelobe interference, and has better structure fidelity.
【作者單位】: 國防科學(xué)技術(shù)大學(xué)電子科學(xué)與工程學(xué)院;
【基金】:國家自然科學(xué)基金(61171135)
【分類號】:TN957.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭睿;包敏;李軍;臧博;邢孟道;;極化SAR圖像中的弱小艦船目標(biāo)檢測[J];系統(tǒng)工程與電子技術(shù);2011年06期
2 李為民,石志廣,付強(qiáng);艦船目標(biāo)與舷外干擾的電磁特征分析與鑒別方法研究[J];湖南科技大學(xué)學(xué)報(自然科學(xué)版);2004年04期
3 山鵬;張振華;王曉紅;;基于艦船目標(biāo)的極化SAR改進(jìn)濾波算法研究[J];遙測遙控;2011年05期
4 李為民,石志廣,付強(qiáng);艦船目標(biāo)雷達(dá)回波特征信號的建模與仿真[J];系統(tǒng)仿真學(xué)報;2005年09期
5 王勇;許小劍;;海上艦船目標(biāo)的寬帶雷達(dá)散射特征信號仿真[J];航空學(xué)報;2009年02期
6 閆海鵬;于勇;張彬;;基于實測數(shù)據(jù)的艦船目標(biāo)前視成像方法研究[J];遙測遙控;2014年04期
7 陳秋菊;杜小勇;胡衛(wèi)東;郁文賢;;面向識別的雷達(dá)艦船目標(biāo)低分辨回波仿真技術(shù)[J];計算機(jī)仿真;2007年07期
8 趙艷玲;門麗潔;于l,
本文編號:2454965
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2454965.html
最近更新
教材專著