基于文本無關(guān)的聲紋識別算法的研究及實現(xiàn)
[Abstract]:With the rapid development of Internet technology, the network gradually covers every corner of social life. In the Internet environment, the traditional identity authentication method is facing a huge challenge, which is more and more unable to meet the needs of the practical application environment. Among all the authentication methods, biometric identification technology is a kind of identity recognition technology based on human physiological and acquired characteristics, which has been widely used in practice because of its unique advantages. Among all biometric identification techniques, text-independent voiceprint recognition is considered to be one of the most practical biometric identification techniques. It is an important branch of speech recognition. In the practical application environment, due to the influence of many factors, such as acquisition equipment, transmission line, and so on, the final effective speech data is very limited, which makes the recognition performance and execution efficiency of the system difficult to achieve the ideal recognition effect. Therefore, this paper is mainly based on the text-independent phonetics validation method. The recognition rate and computational complexity of the system are important indexes to evaluate the system performance in the voiceprint verification system. The traditional UBM-MAP-GMM model structure solves the mismatch between the test speech and the trained speech to a certain extent, and the recognition performance of the system is also ideal. However, in the practical application, in the face of the short speech problem, the model requires a lot of computation. System robustness is poor. Therefore, this paper studies the voiceprint recognition algorithm from several angles, such as reducing the system computation and improving the recognition rate. The main contents are as follows: 1. This paper analyzes the influence of the initial value of the model on the EM algorithm in model training, aiming at the defect that the traditional K-means algorithm randomly selects the initial clustering center, which may lead to the local convergence of the algorithm, an initial clustering center selection algorithm based on density and distance is proposed. The K-means algorithm is improved, and the algorithm is proved by experiment. 2. 2. The structure of UBM-MAP-GMM model is discussed and analyzed. According to the large amount of calculation, the influence of individual voice-pattern model GMM service from the same model structure and part of Gao Si component on the recognition result is discussed. A voiceprint validation method based on UBM-CM-MAP-GMM model architecture is proposed. Experiments show that the algorithm can improve the recognition time and error rate of the algorithm. In the framework of UBM-CM-MAP-GMM model, the mixing degree of the voiceprint model GMM is studied. The experimental data show that the best result is when the mixing degree of GMM is half that of UBM. 4. In this paper, the phonetics validation software is implemented on the UBM-CM-MAP-GMM model architecture, and the recognition efficiency of the software is analyzed and verified experimentally. Compared with the traditional UBM-MAP-GMM model architecture, the recognition efficiency of the software is compared with that of the traditional UBM-MAP-GMM model. The improved algorithm reduces the amount of computation and the rate of equal error to a certain extent.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN912.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔡耿平,黃順珍,徐志鴻,藍(lán)波,范國華,梁凡;聲紋識別系統(tǒng)[J];深圳大學(xué)學(xué)報;2002年02期
2 于哲舟,楊佳東,蒲東兵,周春光,王綱巧;多門限聲紋識別方法[J];吉林大學(xué)學(xué)報(信息科學(xué)版);2005年02期
3 朱浩冰;郭東輝;;聲紋識別系統(tǒng)原理及其關(guān)鍵技術(shù)[J];計算機(jī)安全;2007年09期
4 靳玉紅;;聲紋識別中的語言屬性映射[J];重慶郵電大學(xué)學(xué)報(自然科學(xué)版);2012年04期
5 葉田田;;聲紋識別系統(tǒng)設(shè)計[J];工業(yè)控制計算機(jī);2012年06期
6 霍春寶;張彩娟;趙紅敏;;與文本無關(guān)的聲紋識別系統(tǒng)的研究[J];遼寧工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2013年01期
7 楊凌;蔡濤;李瀚;;一種改進(jìn)型回聲狀態(tài)網(wǎng)絡(luò)及其在聲紋識別上的應(yīng)用[J];中國科技信息;2014年08期
8 陳幼松;從“芝麻開門”到聲紋識別[J];百科知識;2003年01期
9 任培花;孫宏志;;基于言語過濾、情感補償?shù)幕铙w聲紋識別系統(tǒng)的設(shè)計[J];重慶科技學(xué)院學(xué)報(自然科學(xué)版);2007年01期
10 王會清;張濤;周帆;;聲紋識別在虛擬儀器平臺的實現(xiàn)[J];武漢工程大學(xué)學(xué)報;2012年12期
相關(guān)會議論文 前2條
1 楊瑩春;雷震春;吳朝暉;;基于情感補償?shù)幕铙w聲紋識別框架研究[A];第一屆中國情感計算及智能交互學(xué)術(shù)會議論文集[C];2003年
2 黃曉丹;洪青陽;李琳;李稀敏;梁大偉;陳萬里;呂偉辰;丘敬云;王薇;;聲紋識別語音數(shù)據(jù)庫建設(shè)的探討[A];第十一屆全國人機(jī)語音通訊學(xué)術(shù)會議論文集(一)[C];2011年
相關(guān)重要報紙文章 前5條
1 閆潔;聲紋識別高精尖聽音辨人不遙遠(yuǎn)[N];新華每日電訊;2014年
2 吳璽宏;聲紋識別應(yīng)用前景[N];計算機(jī)世界;2001年
3 邢方亮;以聲辨人[N];計算機(jī)世界;2003年
4 北京大學(xué)信息科學(xué)中心視覺與聽覺信息處理國家重點實驗室 吳璽宏;聲紋識別聽聲辨人[N];計算機(jī)世界;2001年
5 本報記者 霍娜;云上積累 云中綻放[N];中國計算機(jī)報;2014年
相關(guān)博士學(xué)位論文 前1條
1 張晶;聲紋識別魯棒性技術(shù)及應(yīng)用研究[D];廣東工業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 楊瑞瑞;基于文本無關(guān)的聲紋識別算法的研究及實現(xiàn)[D];電子科技大學(xué);2017年
2 于嫻;聲紋識別在微信中的模式匹配研究[D];貴州大學(xué);2015年
3 劉磊;聲紋識別算法在軍事通話中的研究與實現(xiàn)[D];東北大學(xué);2014年
4 陳俊彬;融合聲紋識別的護(hù)理床語音控制系統(tǒng)研發(fā)[D];廣東工業(yè)大學(xué);2016年
5 周雷;基于聲紋識別的說話人身份確認(rèn)方法的研究[D];上海師范大學(xué);2016年
6 胡青;卷積神經(jīng)網(wǎng)絡(luò)在聲紋識別中的應(yīng)用研究[D];貴州大學(xué);2016年
7 陳霄鵬;聲紋識別中的時變魯棒性問題研究[D];貴州大學(xué);2016年
8 張芝旖;聲紋識別相關(guān)技術(shù)研究及應(yīng)用[D];南京航空航天大學(xué);2016年
9 李韻;聲紋識別系統(tǒng)中特征參數(shù)提取方法的對比分析研究[D];成都理工大學(xué);2016年
10 王可;基于移動終端的聲紋識別系統(tǒng)關(guān)鍵算法研究[D];上海師范大學(xué);2017年
,本文編號:2387580
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2387580.html