純轉(zhuǎn)動(dòng)拉曼激光雷達(dá)探測(cè)北京地區(qū)近地面大氣溫度
[Abstract]:The vertical distribution of temperature in the troposphere is directly related to weather phenomena and atmospheric pollutant diffusion, and has been a key observation object in meteorological and environmental departments. At present, lidar technology has become an effective means to detect the vertical distribution and time evolution of atmospheric temperature in the troposphere. However, because there are a lot of aerosol particles in the troposphere, the traditional vibratory Raman and Rayleigh scattering lidar techniques have some limitations in measuring atmospheric temperature. In particular, the presence of high concentrations of aerosol particles in the boundary layer will seriously reduce the accuracy of atmospheric temperature measurement. The pure rotational Raman lidar technique can effectively reduce the influence of aerosol particles on the measurement temperature accuracy. The core of pure rotational Raman temperature measuring lidar is the design of light splitting unit, which is widely used in domestic and foreign research based on double grating interferometer. In this paper, the pure rotational Raman signal based on filter method is designed. Compared with this method, the method is more efficient, and the sensitivity of lidar system can be changed by adjusting the angle of filter, and the operation is simpler. The lidar was installed at the Super Atmospheric Observatory of the University of Science and Technology of China in November 2014 with the support of the pilot project "Air Haze recovery and Control" of the Chinese Academy of Sciences. During the Asia-Pacific Economic Cooperation (APEC) Beijing meeting, an atmospheric environmental measurement test was launched. The energy of ultraviolet band is about 200mJ, the frequency is 20 Hz, the number of laser pulses is 5 000, and the spatial resolution is 7.5 m. The experimental results show that the statistical error of temperature measurement is less than 1. 5 K and the height of measurement can reach 10 km, under 7.5 km under the condition of clear and cloudless aerosol concentration smaller than 1. 5 K. Under the condition of thin cloud or mild haze weather, the statistical error of temperature measurement is about 鹵3K, and the effective height of measurement is usually less than 1 KK when the effective height is 6 ~ 8 km, or less than 4.8 km.
【作者單位】: 中國科學(xué)院合肥物質(zhì)科學(xué)研究院安徽光學(xué)精密機(jī)械研究所大氣成分與光學(xué)重點(diǎn)實(shí)驗(yàn)室;中國科學(xué)技術(shù)大學(xué);
【基金】:國家863計(jì)劃(2012AA120901) 國家自然科學(xué)基金(41405032) 中國科學(xué)院重點(diǎn)部署項(xiàng)目(KJZD-EW-TZ-G06-01-20) 安徽省自主創(chuàng)新專項(xiàng)(12Z0104074)
【分類號(hào)】:TN958.98
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 趙日峰;魏冬梅;潘杰;肖斌;張童心;;拉曼雷達(dá)測(cè)量大氣二氧化碳濃度回波信號(hào)誤差分析[J];北京理工大學(xué)學(xué)報(bào);2014年06期
2 余學(xué)俊;洪小斌;;拉曼型DOFS系統(tǒng)中信號(hào)處理的研究與實(shí)現(xiàn)[J];光電子技術(shù);2012年04期
3 蔡?hào)|芬;探討拉曼放大器在DWDM中的應(yīng)用[J];福建電腦;2005年07期
相關(guān)博士學(xué)位論文 前5條
1 劉施菲;激光雷達(dá)輔助的慣性導(dǎo)航組合系統(tǒng)技術(shù)研究[D];哈爾濱工程大學(xué);2015年
2 王強(qiáng);基于激光雷達(dá)數(shù)據(jù)與多角度遙感模型的森林參數(shù)反演研究[D];哈爾濱工業(yè)大學(xué);2017年
3 徐璐;Gm-APD脈沖累積激光雷達(dá)探測(cè)性能提高的研究[D];哈爾濱工業(yè)大學(xué);2017年
4 葉光超;條紋陣列探測(cè)激光雷達(dá)測(cè)距精度與三維測(cè)繪技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
5 呂丹;基于點(diǎn)法向量姿態(tài)估計(jì)的激光雷達(dá)距離像目標(biāo)識(shí)別算法研究[D];哈爾濱工業(yè)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前3條
1 喬海龍;拉曼增益對(duì)孤子傳輸特性的影響[D];內(nèi)蒙古大學(xué);2014年
2 高曉輝;光纖拉曼放大器在光纖通信系統(tǒng)中的性能研究[D];西安郵電大學(xué);2014年
3 范文文;基于拉曼放大的千公里傳輸系統(tǒng)[D];北京郵電大學(xué);2013年
,本文編號(hào):2352879
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2352879.html