星地測控鏈路高精度時頻同步關(guān)鍵技術(shù)與驗(yàn)證
[Abstract]:It is one of the important reasons for the development of aerospace industry to establish a complete satellite-ground TT & C network. Both navigation and positioning system and meteorological remote sensing system belong to the category of satellite-ground TT & C network. Direct sequence spread spectrum (DSSS) is always the first choice of satellite-ground TT & C link communication mode by virtue of its excellent anti-jamming capability. As a prerequisite to complete the scheduled measurement and control function, the time-frequency synchronization of spread spectrum signals is very important. However, the special communication environment and external conditions have two effects on the received signal: the long communication distance and the bad channel make the received signal power attenuate greatly, and the signal-to-noise ratio is very low; The Doppler effect of the received signal is aggravated by the high dynamic characteristics of the satellite. Without accurate time-frequency synchronization, the whole measurement and control service will fail. Therefore, this paper studies the key technologies of time-frequency synchronization of satellite-ground TT & C link using direct sequence spread spectrum, including: first, aiming at the acquisition time requirement of link 5s and the Doppler frequency offset up to 鹵150kHz. This paper investigates three methods of PN code acquisition and selects the combination of fast PN code acquisition based on FFT and Doppler frequency offset one-dimensional search to improve signal-to-noise ratio (SNR) 45 times by differential coherent integration. The pseudo code acquisition is completed in 4.515s by precompensation of the received signal frequency offset, one FFT operation and one IFFT operation, and the differential coherent integration is 45 times later. Secondly, according to the classical pseudo code tracking loop, a 5 parallel pseudo code tracking loop design scheme is proposed for pseudo code phase jitter. By setting different pseudo code offsets to each of the five branches, the best sampling branch is the one with the largest correlation with the received data. The pseudo code phase tracking is completed, and the precision is as high as 1 / 4 code chip. Thirdly, for the residual frequency offset after Doppler frequency offset precompensation, the phase difference locking of Costas loop which is not sensitive to modulation data is used to compensate and calculate the frequency difference feedback to Doppler frequency offset precompensation. Finish the Simulink simulation of the above scheme design. 4. Based on the software radio platform, the key technology of high precision time-frequency synchronization of satellite-ground measurement and control link is verified. With FPGA chip as the main device and Verilog as the programming language, the key technology of time-frequency synchronization can be tested on board. This paper explores and verifies the key technologies of time-frequency synchronization of satellite-ground TT & C links under certain conditions. The research results have been realized and tested in engineering, which is of practical value and can provide reference and support for the construction of satellite-ground TT & C network in China.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:V556;TN914.42
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 戈良東;高小玲;宮帥帥;劉盛銘;;臨近空間飛行器測控通信需求與策略分析[J];國防科技;2012年02期
2 柴霖;許秀玲;;深空測控體系結(jié)構(gòu)與技術(shù)發(fā)展[J];電訊技術(shù);2010年08期
3 樊耀林;李志強(qiáng);吳學(xué)英;;深空探測測控通信系統(tǒng)[J];數(shù)字通信世界;2010年05期
4 王鵬宇;呂善偉;黨群;陳彥賓;;基于碼域頻域FFT的偽碼捕獲的改進(jìn)與實(shí)現(xiàn)[J];系統(tǒng)工程與電子技術(shù);2008年08期
5 李雄飛;邱樂德;王宇;;FFT輔助的部分相關(guān)碼捕獲技術(shù)的實(shí)現(xiàn)[J];電訊技術(shù);2007年04期
6 李菊;陳禾;金俊坤;吳嗣亮;;基于FFT的兩種偽碼快速捕獲方案的研究與實(shí)現(xiàn)[J];電子與信息學(xué)報(bào);2006年10期
7 路文娟;王峗;;GPS、GLONASS系統(tǒng)的概況與比較[J];技術(shù)與市場;2006年08期
8 孫鵬勇;直接序列擴(kuò)頻通信系統(tǒng)處理增益分析[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年01期
相關(guān)碩士學(xué)位論文 前7條
1 王凱;連續(xù)可變速率直接序列擴(kuò)頻關(guān)鍵技術(shù)研究與驗(yàn)證[D];電子科技大學(xué);2016年
2 饒啟龍;基于CCSDS的火星探測器測控通信系統(tǒng)鏈路分析與設(shè)計(jì)[D];上海交通大學(xué);2012年
3 趙鐵剛;基于GNSS信號的對流層建模與延遲誤差分析[D];哈爾濱工業(yè)大學(xué);2011年
4 孫斌;基于PMF-FFT快速捕獲算法的研究與實(shí)現(xiàn)[D];哈爾濱工業(yè)大學(xué);2011年
5 梁秀娟;基于雙頻GNSS信號的電離層延遲模型的研究[D];哈爾濱工業(yè)大學(xué);2011年
6 袁樂;深空通信中的電波傳播特性研究[D];哈爾濱工業(yè)大學(xué);2011年
7 張偉;GNSS高動態(tài)接收機(jī)關(guān)鍵技術(shù)研究[D];北京郵電大學(xué);2011年
,本文編號:2333473
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2333473.html