高分辨率PolSAR圖像的超像素分割方法研究
[Abstract]:Polarimetric synthetic Aperture Radar (PolSAR) transmits and receives electromagnetic waves through polarimetric combined antennas, which can obtain abundant scattering information from the received electromagnetic waves. Compared with SAR system with single or double polarization, PolSAR system can measure more information of ground object and reflect the situation of ground object more realistically. With the improvement of the resolution of PolSAR images, although high-resolution images can provide more texture information and structure information, there are some problems in the pixel by pixel interpretation of PolSAR images: there is serious speckle noise in PolSAR images. As a result, many pixels in the image are noise points with uncertain categories, which can be interpreted by the method of pixel by pixel. In high-resolution PolSAR images, adjacent pixels are likely to belong to the same ground object. Therefore, the information contained in these pixels is basically similar, if these pixels are processed separately, the information will be redundant. In order to solve some problems caused by pixel interpretation of high resolution PolSAR images, some scholars have proposed the concept of super pixel. Super pixel is a uniform image block composed of pixels with high similarity in shape, color, texture and so on. In high-resolution images, the amount of data is very large, there are tens of thousands of pixels, after super-pixel segmentation, the subsequent processing becomes hundreds of super-pixels. The concept of super-pixel is proposed in optical image. According to the polarization characteristics of PolSAR image, this paper applies hyperpixel segmentation to PolSAR image. The main research contents are as follows: first, In order to extract rich polarization and texture information from PolSAR images, the basic theory of PolSAR and the representation method of polarization data are studied. The target decomposition and texture feature extraction methods of PolSAR images are studied. Secondly, the different computing method in PolSAR image is studied. According to the extracted polarization feature and texture feature, the idea of using the Euclidean distance between the features to calculate the difference is put forward, and the basic principle of super-pixel segmentation is studied. And the traditional SLIC algorithm and the traditional watershed algorithm, combined with the characteristics of the PolSAR image, the two algorithms are improved to obtain the super-pixel with high edge fit in the PolSAR image. Finally, the evaluation criteria of the super-pixel segmentation results are studied, and the evaluation criteria suitable for PolSAR images are given. The experimental results are verified by using three experimental data, and the results are evaluated qualitatively and quantitatively.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN957.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 黃誼;任毅;;基于閾值法和區(qū)域生長(zhǎng)法的圖像分割算法研究[J];電子測(cè)試;2012年10期
2 王軍輝;李瑞克;劉小洋;;基于改進(jìn)Sobel算法的實(shí)時(shí)邊緣檢測(cè)系統(tǒng)[J];計(jì)算機(jī)與數(shù)字工程;2012年06期
3 康牧;許慶功;王寶樹(shù);;一種Roberts自適應(yīng)邊緣檢測(cè)方法[J];西安交通大學(xué)學(xué)報(bào);2008年10期
4 沈峰亭;魏紅;;基于改進(jìn)Sobel算子的螺紋邊緣檢測(cè)[J];微計(jì)算機(jī)信息;2008年01期
5 馮建輝;楊玉靜;;基于灰度共生矩陣提取紋理特征圖像的研究[J];北京測(cè)繪;2007年03期
6 王娜,李霞;一種新的改進(jìn)Canny邊緣檢測(cè)算法[J];深圳大學(xué)學(xué)報(bào);2005年02期
相關(guān)博士學(xué)位論文 前2條
1 張臘梅;極化SAR圖像人造目標(biāo)特征提取與檢測(cè)方法研究[D];哈爾濱工業(yè)大學(xué);2010年
2 孫玉寶;圖像稀疏表示模型及其在圖像處理反問(wèn)題中的應(yīng)用[D];南京理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前4條
1 韓斌;基于內(nèi)容的超像素合并及其在圖像分割中的應(yīng)用[D];上海交通大學(xué);2013年
2 劉春燕;圖像分割評(píng)價(jià)方法研究[D];西安電子科技大學(xué);2011年
3 畢芳;基于馬爾科夫隨機(jī)場(chǎng)的紋理圖像分類(lèi)[D];西安理工大學(xué);2010年
4 劉東菊;基于閾值的圖像分割算法的研究[D];北京交通大學(xué);2009年
,本文編號(hào):2276678
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2276678.html