機(jī)載噪聲環(huán)境下語(yǔ)音增強(qiáng)研究
[Abstract]:Aiming at speech enhancement in airborne noise environment, the purpose of this paper is to reduce or even reduce the single frequency noise and to overcome the specific noise. With the help of speech endpoint detection, adaptive LMS algorithm and speech enhancement algorithm, the speech quality is improved. The noise reduction algorithm is transplanted by using the DSP software and hardware processing platform. The main contents are as follows: 1. The theory, analysis, simulation and simulation of speech signal processing are summarized, and the speech enhancement algorithm is discussed and simulated. This paper introduces the subjective and objective evaluation index .2which is used to evaluate the speech quality and the degree of speech distortion, and simulates the single frequency (narrowband) noise of the airborne system. Two high and low threshold thresholds and a zero crossing threshold are set to distinguish the single frequency interference signal. The speech endpoint is detected by combining with the improved spectral entropy function, and then the partial noise is filtered by multi-window spectral estimation spectral subtraction. At the same time, an improved normalized adaptive LMS variable step size filtering algorithm is proposed for airborne single-tone detection signals. The minimum error at the input and output end of the filter and the convergence speed of the algorithm are used to determine the effect of single-tone noise reduction. Then the single-tone data is stored in the buffer pool waiting for output .3. the improved speech enhancement residual IMCRA algorithm is used to estimate the noise spectrum of the low-frequency or high-frequency components in the airborne environment. The fast tracking and updating of the rapidly changing non-stationary noise is realized, and the decision threshold of speech frame is set to distinguish the silent segment from the speech segment to reduce the over-estimation of the noise, and the delay and deviation are effectively reduced. In order to reduce music noise and estimate prior signal-to-noise ratio (SNR) by using improved LogMMSE algorithm, an ideal binary masking based on time-frequency segmentation is used to eliminate the threshold part of SNR, and then the enhanced speech signal is obtained. The MATLAB simulation and data analysis of the improved algorithm are given. The software and hardware platform of DSP based on TMS320VC5416 is built to transplant the speech noise reduction algorithm. The transplant ideas of spectrum reduction and LMS denoising algorithm are analyzed. The simulation results show that the speech quality can be improved.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN912.35
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 龐亮;陳亮;張翼鵬;黃清泉;;基于增益字典查詢的語(yǔ)音增強(qiáng)算法[J];計(jì)算機(jī)科學(xué);2015年10期
2 房安棟;劉軍萬(wàn);;復(fù)雜背景下聲紋識(shí)別系統(tǒng)的研究方法綜述[J];電子世界;2013年03期
3 鄧艷容;景新幸;楊海燕;楊運(yùn)澤;;語(yǔ)音端點(diǎn)檢測(cè)研究[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2012年06期
4 姚永強(qiáng);易本順;姚遠(yuǎn);;航空噪聲背景下的語(yǔ)音端點(diǎn)檢測(cè)和語(yǔ)音增強(qiáng)[J];電聲技術(shù);2006年01期
5 蔡斌,郭英,李宏偉,龔成;一種改進(jìn)型MMSE語(yǔ)音增強(qiáng)方法[J];信號(hào)處理;2004年01期
相關(guān)碩士學(xué)位論文 前6條
1 羅路;基于ARM平臺(tái)的語(yǔ)音降噪算法的研究與實(shí)現(xiàn)[D];山東大學(xué);2015年
2 張海南;非平穩(wěn)噪聲環(huán)境中的語(yǔ)音增強(qiáng)技術(shù)研究[D];電子科技大學(xué);2015年
3 康康;基于雙通道DSP+FPGA的數(shù)字信號(hào)處理系統(tǒng)[D];西安電子科技大學(xué);2014年
4 袁問(wèn)渠;混合編碼方式下語(yǔ)音增強(qiáng)方法的研究與實(shí)現(xiàn)[D];電子科技大學(xué);2009年
5 劉靜;機(jī)載環(huán)境下語(yǔ)音噪聲抑制技術(shù)研究及實(shí)現(xiàn)[D];電子科技大學(xué);2008年
6 鄧克巖;基于譜減法的語(yǔ)音增強(qiáng)在DSP環(huán)境下實(shí)時(shí)實(shí)現(xiàn)的研究[D];蘭州交通大學(xué);2006年
,本文編號(hào):2253868
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2253868.html